Lecture 3.8: Pythagoras, Parseval, and Plancherel

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Our journey from \mathbb{R}^{n} to Fourier transforms

In the beginning of this class, we started with standard Euclidean space, \mathbb{R}^{n}. The dot product gave us a notion of geometry: lengths, angles, and projections. Our favorite orthonormal basis was $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$.

Moving on to the space $\operatorname{Per}_{2 L}(\mathbb{C})$ of piecewise $2 L$-periodic functions, we defined an inner product, which gave us a notion of geometry: norms, angles, and projections. Our favorite orthonormal basis was $\left\{e^{i \pi n x / L} \mid n \in \mathbb{Z}\right\}$.

Let $L^{2}(\mathbb{R})$ be the set of square-integrable functions, i.e., $\|f\|^{2}:=\int_{\mathbb{R}}|f|^{2} d x<\infty$. The Fourier transform of $f \in L^{2}(\mathbb{R})$ can be thought of as a "continuous" version of a Fourier series.

Definition

We defined the Fourier transform of $f \in L^{2}(\mathbb{R})$ and its inverse transform as

$$
\widehat{f}(\omega):=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x, \quad \text { and } \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f}(x) e^{i \omega x} d \omega
$$

Think of ω as angular frequency. Another definition of the Fourier transform was in terms of oscillatory frequency, $\xi=\omega /(2 \pi)$:

$$
\widetilde{f}(\xi):=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i \xi x} d x, \quad \text { and } \quad f(x)=\int_{-\infty}^{\infty} \widetilde{f}(x) e^{2 \pi i \xi x} d \xi
$$

Generalizations of a celebrated theorem of the ancient Greeks
Pythagorean theorem for vectors in \mathbb{R}^{n}
Given a vector $\mathbf{v}=c_{1} \mathbf{e}_{1}+\cdots+c_{n} \mathbf{e}_{n}$,

$$
\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle=\sum_{i=1}^{n} c_{i}^{2}
$$

Parseval's identity for Fourier series in $\operatorname{Per}_{2 L}(\mathbb{C})$

Given a Fourier series $f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i \pi n x / L}$,

$$
\|f\|^{2}=\langle f, f\rangle=\frac{1}{2 L} \int_{-L}^{L}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty} c_{n}^{2}
$$

Plancherel's theorem for Fourier transforms in $L^{2}(\mathbb{R})$
If f is square-integrable, then

$$
\|\widehat{f}\|^{2}=\langle\widehat{f}, \widehat{f}\rangle=\int_{-\infty}^{\infty}|\widehat{f}(\xi)|^{2} d \xi=\int_{-\infty}^{\infty}|f(x)|^{2} d x=\langle f, f\rangle=\|f\|^{2}
$$

Parseval's identity for Fourier transforms

Plancherel's theorem says that the Fourier transform is an isometry. It follows from a more general result.

Parseval's identity for Fourier transforms

If $f, g \in L^{2}(\mathbb{R})$, then $\langle f, g\rangle=\langle\widehat{f}, \widehat{g}\rangle$.

Proof

Introduction

Parseval's identity for real Fourier series
If $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}$, then

$$
\|f\|^{2}=\langle f, f\rangle:=\frac{1}{L} \int_{-L}^{L}(f(x))^{2} d x=\frac{1}{2} a_{0}^{2}+\sum_{n=1}^{\infty} a_{n}^{2}+b_{n}^{2} .
$$

An application of Parseval's identity

Sum of inverse squares
Compute the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots$.

