Lecture 4.1: Boundary value problems

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Introduction

Initial vs. boundary value problems

If $y(t)$ is a function of time, then the following is an initial value problem (IVP):

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

If $y(x)$ is a function of position, then the following is a boundary value problem (BVP):

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0, \quad y(0)=0, \quad y(\pi)=0
$$

The theory (existence and unique of solutions) of IVPs is well-understood. In contrast, BVPs are more complicated.

Solutions to boundary value problems

Examples

Solve the following boundary value problems:

1. $y^{\prime \prime}=-y, \quad y(0)=0, y(\pi)=0$.
2. $y^{\prime \prime}=-y, \quad y(0)=0, \quad y(\pi / 2)=0$.
3. $y^{\prime \prime}=-y, \quad y(0)=0, \quad y(\pi)=1$.

Dirichlet boundary conditions (1st type)

Example 1

Find all solutions to the following boundary value problem:

$$
y^{\prime \prime}=\lambda y, \quad y(0)=0, \quad y(L)=0 .
$$

von Neumann boundary conditions (2nd type)

Example 2

Find all solutions to the following boundary value problem:

$$
y^{\prime \prime}=\lambda y, \quad y^{\prime}(0)=0, \quad y^{\prime}(L)=0 .
$$

Mixed boundary conditions

Example 3

Find all solutions to the following boundary value problem:

$$
y^{\prime \prime}=\lambda y, \quad y(0)=0, \quad y^{\prime}(L)=0
$$

More complicated boundary conditions

Example 4

Find all solutions to the following boundary value problem:

$$
y^{\prime \prime}=\lambda y, \quad y(0)=0, \quad y(L)+y^{\prime}(L)=0 .
$$

