Lecture 4.1: Boundary value problems

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Introduction

Initial vs. boundary value problems

If y(t) is a function of time, then the following is an initial value problem (IVP):

$$y'' + 2y' + 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

If y(x) is a function of position, then the following is a boundary value problem (BVP):

$$y'' + 2y' + 2y = 0,$$
 $y(0) = 0,$ $y(\pi) = 0$

The theory (existence and unique of solutions) of IVPs is well-understood. In contrast, BVPs are more complicated.

Solutions to boundary value problems

Examples

Solve the following boundary value problems:

1.
$$y'' = -y$$
, $y(0) = 0$, $y(\pi) = 0$.

2.
$$y'' = -y$$
, $y(0) = 0$, $y(\pi/2) = 0$.

3.
$$y'' = -y$$
, $y(0) = 0$, $y(\pi) = 1$.

Dirichlet boundary conditions (1st type)

Example 1

$$y'' = \lambda y, \qquad y(0) = 0, \quad y(L) = 0.$$

von Neumann boundary conditions (2nd type)

Example 2

$$y'' = \lambda y$$
, $y'(0) = 0$, $y'(L) = 0$.

Mixed boundary conditions

Example 3

$$y'' = \lambda y,$$
 $y(0) = 0,$ $y'(L) = 0.$

More complicated boundary conditions

Example 4

$$y'' = \lambda y$$
, $y(0) = 0$, $y(L) + y'(L) = 0$.