Lecture 4.2: Symmetric and Hermitian matrices

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Motivation

Recall the following concept from linear algebra.

Definition

Let \mathbf{A} be an $n \times n$ matrix and $\mathbf{v} \in \mathbb{R}^{n}$ be a vector. If $\mathbf{A} \mathbf{v}=\lambda \mathbf{v}$ for some $\lambda \in \mathbb{C}$, then \mathbf{v} is an eigenvector with eigenvalue λ.

Remark

The eigenvalues λ_{1}, λ_{2} of a 2×2 matrix \mathbf{A} are the roots of a degree- 2 polynomial. There are 3 cases:
(i) distinct, real roots: $-\infty<\lambda_{1}<\lambda_{2}<\infty$,
(ii) complex roots: $\lambda_{1,2}=a \pm b i$,
(iii) repeated roots: $\lambda_{1}=\lambda_{2}$.

Symmetric matrices

Theorem

If a (real-valued) matrix \mathbf{A} is symmetric, i.e., $\mathbf{A}^{T}=\mathbf{A}$, then:

1. All eigenvalues are real.
2. There is a full orthonormal set (a basis!) of eigenvectors.

Example

Compute the eigenvalues and eigenvectors of $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.

Symmetric matrices

Theorem

If a (real-valued) matrix \mathbf{A} is symmetric, i.e., $\mathbf{A}^{T}=\mathbf{A}$, then

1. All eigenvalues are real.
2. There is a full orthonormal set (a basis!) of eigenvectors.

Non-examples

Compute the eigenvalues and eigenvectors of:

- $\mathbf{B}=\left[\begin{array}{ll}3 & -9 \\ 4 & -3\end{array}\right]$
- $\mathbf{C}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

Hermitian matrices

Theorem

If a (complex-valued) matrix \mathbf{A} is Hermitian, i.e., $\mathbf{A}^{T}=\overline{\mathbf{A}}$ then

1. All eigenvalues are real.
2. There is a full orthonormal set (a basis!) of eigenvectors.

Example

Compute the eigenvalues and eigenvectors of $\mathbf{A}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$

Hermitian matrices

Theorem

If a (complex-valued) matrix \mathbf{A} is Hermitian, i.e., $\mathbf{A}^{T}=\overline{\mathbf{A}}$ then

1. All eigenvalues are real.
2. There is a full orthonormal set (a basis!) of eigenvectors.

Non-example

Compute the eigenvalues and eigenvectors of $\mathbf{A}=\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$

Self-adjoint mappings

Definition

Let V be a vector space with inner product $\langle-,-\rangle$. A linear map $\mathbf{A}: V \rightarrow V$ is self-adjoint if

$$
\langle\mathbf{A} \mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{v}, \mathbf{A} \mathbf{w}\rangle, \quad \text { for all } \mathbf{v}, \mathbf{w} \in V .
$$

Remarks

- Using the standard dot product in $V=\mathbb{R}^{n}$, a matrix \mathbf{A} is self-adjoint iff it is symmetric.
- Using the standard inner product in $V=\mathbb{C}^{n}$, a matrix \mathbf{A} is self-adjoint iff it is Hermitian.

Theorem (proof in the next lecture)

If \mathbf{A} is self-adjoint, then:

1. All eigenvalues are real.
2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Think about what this means in (infinite-dimensional) vector spaces of functions, where differential operators are linear maps.

