Lecture 4.3: Self-adjoint linear operators

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Why self-adjoint operators are nice

Definition

Let V be a vector space with inner product $\langle-,-\rangle$. A linear operator $L: V \rightarrow V$ is self-adjoint if

$$
\langle L f, g\rangle=\langle f, L g\rangle, \quad \text { for all } f, g \in V .
$$

Theorem

If L is a self-adjoint linear operator, then:
(i) All eigenvalues of L are real.
(ii) Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Proof

A one-variable example

Remark

The linear operator $L=\frac{d^{2}}{d x^{2}}=\partial_{x}^{2}$ on the space $\mathcal{C}^{\infty}[0,1]$ is not self-adjoint.

Dirichlet vs. Neumann boundary conditions

Proposition

The linear operator $L=\frac{d^{2}}{d x^{2}}=\partial_{x}^{2}$ on either of the subspaces

- $\mathcal{C}_{0}^{\infty}[a, b]:=\left\{f \in \mathcal{C}^{\infty}[a, b]: f(a)=f(b)=0\right\}$
- $\mathcal{C}_{\perp}^{\infty}[a, b]:=\left\{f \in \mathcal{C}^{\infty}[a, b]: f^{\prime}(a)=f^{\prime}(b)=0\right\}$
is self-adjoint.

Mixed boundary conditions

Proposition

The linear operator $L=\frac{d^{2}}{d x^{2}}=\partial_{x}^{2}$ on the subspace

$$
\mathcal{C}_{\alpha, \beta}^{\infty}[a, b]:=\left\{f \in \mathcal{C}^{\infty}[a, b]: \alpha_{1} f(a)+\alpha_{2} f^{\prime}(a)=0, \quad \beta_{1} f(b)+\beta_{2} f^{\prime}(b)=0\right\}
$$

where $\alpha_{1}^{2}+\alpha_{2}^{2}>0$ and $\beta_{1}^{2}+\beta_{2}^{2}>0$, is self-adjoint.

A multivariate example

Theorem

Let $R \subset \mathbb{R}^{n}$ be a bounded region with a smooth boundary B. Then the Laplacian operator

$$
\Delta=\nabla^{2}:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}=\sum_{i=1}^{n} \partial_{x_{i}}^{2}
$$

is self-adjoint on the space $V=\mathcal{C}_{0}^{\infty}(R)$ of infinitely differentiable functions that vanish on B.
The eigenfunctions of ∇^{2} are solutions to the PDE

$$
\nabla^{2} f=\lambda f,
$$

called the Helmholtz equation.

An example from quantum mechanics

Definition

The Hamiltonian is a self-adjoint operator, defined by

$$
H=-\frac{\hbar}{2 m} \nabla^{2}+V
$$

This describes the energy of a particle of mass m in a real potential field V.
The eigenfunctions ψ of H represent the stationary quantum states, and the eigenvalues E describe the energy levels of these states. They are solutions to the following PDE, called Schrödinger equation:

$$
H \psi=E \psi
$$

