Lecture 4.3: Self-adjoint linear operators

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Why self-adjoint operators are nice

Definition

Let V be a vector space with inner product $\langle -, - \rangle$. A linear operator $L \colon V \to V$ is self-adjoint if

 $\langle Lf, g \rangle = \langle f, Lg \rangle$, for all $f, g \in V$.

Theorem

- If L is a self-adjoint linear operator, then:
 - (i) All eigenvalues of *L* are real.
 - (ii) Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Proof

A one-variable example

Remark

The linear operator
$$L = \frac{d^2}{dx^2} = \partial_x^2$$
 on the space $\mathcal{C}^{\infty}[0,1]$ is not self-adjoint.

Dirichlet vs. Neumann boundary conditions

Proposition

The linear operator
$$L = \frac{d^2}{dx^2} = \partial_x^2$$
 on either of the subspaces
a $C_0^{\infty}[a, b] := \left\{ f \in C^{\infty}[a, b] : f(a) = f(b) = 0 \right\}$
b $C_{\perp}^{\infty}[a, b] := \left\{ f \in C^{\infty}[a, b] : f'(a) = f'(b) = 0 \right\}$

is self-adjoint.

Mixed boundary conditions

Proposition

The linear operator $L = \frac{d^2}{dx^2} = \partial_x^2$ on the subspace $C_{\alpha,\beta}^{\infty}[a,b] := \left\{ f \in C^{\infty}[a,b] : \alpha_1 f(a) + \alpha_2 f'(a) = 0, \quad \beta_1 f(b) + \beta_2 f'(b) = 0 \right\},$ where $\alpha_1^2 + \alpha_2^2 > 0$ and $\beta_1^2 + \beta_2^2 > 0$, is self-adjoint.

A multivariate example

Theorem

Let $R \subset \mathbb{R}^n$ be a bounded region with a smooth boundary B. Then the Laplacian operator

$$\Delta =
abla^2 := \sum_{i=1}^n rac{\partial^2}{\partial x_i^2} = \sum_{i=1}^n \partial_{x_i}^2$$

is self-adjoint on the space $V = C_0^{\infty}(R)$ of infinitely differentiable functions that vanish on B.

The eigenfunctions of ∇^2 are solutions to the PDE

$$\nabla^2 f = \lambda f$$

called the Helmholtz equation.

An example from quantum mechanics

Definition

The Hamiltonian is a self-adjoint operator, defined by

$$H = -\frac{\hbar}{2m}\nabla^2 + V.$$

This describes the energy of a particle of mass m in a real potential field V.

The eigenfunctions ψ of H represent the stationary quantum states, and the eigenvalues E describe the energy levels of these states. They are solutions to the following PDE, called Schrödinger equation:

$$H\psi = E\psi.$$