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Last time

Definition

A Sturm-Liouville equation is a 2nd order ODE of the following form:

−(p(x)y ′)′ + q(x)y = λw(x)y , where p(x), q(x), w(x) > 0.

We are usually interested in solutions y(x) on a bounded interval [a, b], under some
homogeneous BCs:

α1y(a) + α2y
′(a) = 0 α2

1 + α2
2 > 0

β1y(b) + β2y
′(b) = 0 β2

1 + β2
2 > 0.

Together, this BVP is called a Sturm-Liouville (SL) problem.

Main theorem

Given a Sturm-Liouville problem:

(a) The eigenvalues are real and can be ordered so λ1 < λ2 < λ3 < · · · → ∞.

(b) Each eigenvalue λi has a unique (up to scalars) eigenfunction yi (x).

(c) W.r.t. the inner product 〈f , g〉 :=
∫ b
a f (x)g(x)w(x) dx , the eigenfunctions form an

orthonormal basis on the subspace of functions C∞α,β [a, b] that satisfy the BCs.
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What this means

Main theorem

Given a Sturm-Liouville problem:

(a) The eigenvalues are real and can be ordered so λ1 < λ2 < λ3 < · · · → ∞.

(b) Each eigenvalue λi has a unique (up to scalars) eigenfunction yi (x).

(c) W.r.t. the inner product 〈f , g〉 :=
∫ b
a f (x)g(x)w(x) dx , the eigenfunctions form an

orthonormal basis on the subspace of functions C∞α,β [a, b] that satisfy the BCs.

Definition

If f ∈ C∞α,β [a, b], then f can be written uniquely as a linear combination of the

eigenfunctions. That is,

f (x) =
∞∑
n=1

cnyn(x), where cn =
〈f , yn〉
〈yn, yn〉

=

∫ b
a f (x)yn(x)w(x) dx∫ b
a ||yn(x)||2w(x) dx

.

This is called a generalized Fourier series with respect to the orthogonal basis {yn(x)} and
weighting function w(x).
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Example 1 (Dirichlet BCs)

−y ′′ = λy , y(0) = 0, y(π) = 0 is an SL problem with:

Eigenvalues: λn = n2, n = 1, 2, 3, . . . .

Eigenfunctions: yn(x) = sin(nx).

The orthogonality of the eigenvectors means that

〈ym, yn〉 :=
∫ π

0
ym(x)yn(x)w(x) dx =

∫ π

0
sin(mx) sin(nx) dx =

{
0 if m 6= n

π/2 if m = n.

Note that this means that ||yn|| := 〈yn, yn〉1/2 =
√
π/2.

Fourier series: any function f (x), continuous on [0, π] satisfying f (0) = 0, f (π) = 0 can be
written uniquely as

f (x) =
∞∑
n=1

bn sin nx

where

bn =
〈f , sin nx〉
〈sin nx , sin nx〉

=

∫ π
0 f (x) sin nx dx

|| sin nx ||2
=

2

π

∫ π

0
f (x) sin nx dx .
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Example 2 (Neumann BCs)

−y ′′ = λy , y ′(0) = 0, y ′(π) = 0 is an SL problem with:

Eigenvalues: λn = n2, n = 0, 1, 2, 3, . . . .

Eigenfunctions: yn(x) = cos(nx).

The orthogonality of the eigenvectors means that

〈ym, yn〉 :=
∫ π

0
ym(x)yn(x)w(x) dx =

∫ π

0
cos(mx) cos(nx) dx =

{
0 if m 6= n

π/2 if m = n > 0.

Note that this means that ||yn|| := 〈yn, yn〉1/2 =

{√
π/2 n > 0
√
π n = 0.

Fourier series: any function f (x), continuous on [0, π] satisfying f ′(0) = 0, f ′(π) = 0 can be
written uniquely as

f (x) =
∞∑
n=0

an cos nx

where

an =
〈f , cos nx〉

〈cos nx , cos nx〉
=

∫ π
0 f (x) cos nx dx

|| cos nx ||2
=

2

π

∫ π

0
f (x) cos nx dx .

The same formula holds for a0 if you let the n = 0 (constant) term be a0
2

rather than a0.
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Example 3 (Mixed BCs)

−y ′′ = λy , y(0) = 0, y ′(π) = 0 is an SL problem with:

Eigenvalues: λn =
(
n + 1

2

)2
, n = 0, 1, 2, . . . .

Eigenfunctions: yn(x) = sin
(
n + 1

2

)
x .

The orthogonality of the eigenvectors means that

〈ym, yn〉 :=
∫ π

0
sin
(
m + 1

2

)
x sin

(
n + 1

2

)
x w(x) dx =

{
0 if m 6= n

π/2 if m = n.

Note that this means that ||yn|| := 〈yn, yn〉1/2 =
√
π/2.

(Generalized?) Fourier series: any function f (x), continuous on [0, π] satisfying f (0) = 0,
f ′(π) = 0 can be written uniquely as

f (x) =
∞∑
n=1

bn sin
(
n + 1

2

)
x

where

bn =
〈f , sin

(
n + 1

2

)
x〉

〈sin
(
n + 1

2

)
x , sin

(
n + 1

2

)
x〉

=

∫ π
0 f (x) sin

(
n + 1

2

)
x dx

|| sin
(
n + 1

2

)
x ||2

=
2

π

∫ π

0
f (x) sin

(
n + 1

2

)
x dx .
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Example 4 (Robin BCs)

−y ′′ = λy , y(0) = 0, y(1) + y ′(1) = 0 is an SL problem with:

Eigenvalues: λn = ω2
n, n = 1, 2, 3, . . . [ωn’s are the positive roots of y(x) = x − tan x].

Eigenfunctions: yn(x) = sin(ωnx).

The orthogonality of the eigenvectors means that

〈ym, yn〉 :=
∫ 1

0
ym(x)yn(x)w(x) dx =

∫ 1

0
sin(ωmx) sin(ωnx) dx =

{
0 if m 6= n

??? if m = n.

Though there isn’t a nice closed-form solution, we still have ||yn|| := 〈yn, yn〉1/2.

Generalized Fourier series: any function f (x), continuous on [0, 1] satisfying f (0) = 0,
f (1) + f ′(1) = 0 can be written uniquely as

f (x) =
∞∑
n=1

bn sinωnx

where

bn =
〈f , sinωnx〉

〈sinωnx , sinωnx〉
=

∫ 1
0 f (x) sinωnx dx

|| sinωnx ||2
=

∫ 1
0 f (x) sinωnx dx∫ 1
0 (sinωnx)2 dx

.
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