Lecture 4.6: Some special orthogonal functions

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/
Math 4340, Advanced Engineering Mathematics

Motivation

Recall that every 2nd order linear homogeneous ODE, $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ can be written in self-adjoint or "Sturm-Liouville form":

$$
-\frac{d}{d x}\left(p(x) y^{\prime}\right)+q(x) y=\lambda w(x) y, \quad \text { where } p(x), q(x), w(x)>0
$$

Many of these ODEs require the Frobenius method to solve.

Examples from physics and engineering

- Legendre's equation: $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$. Used for modeling spherically symmetric potentials in the theory of Newtonian gravitation and in electricity \& magnetism (e.g., the wave equation for an electron in a hydrogen atom).
- Parametric Bessel's equation: $x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda x^{2}-\nu^{2}\right) y=0$. Used for analyzing vibrations of a circular drum.
- Chebyshev's equation: $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0$. Arises in numerical analysis techniques.
- Hermite's equation: $y^{\prime \prime}-2 x y^{\prime}+2 n y=0$. Used for modeling simple harmonic oscillators in quantum mechanics.
- Laguerre's equation: $x y^{\prime \prime}+(1-x) y^{\prime}+n y=0$. Arises in a number of equations from quantum mechanics.
- Airy's equation: $y^{\prime \prime}-k^{2} x y=0$. Models the refraction of light.

Legendre's differential equation

Consider the following Sturm-Liouville problem, defined on $(-1,1)$:

$$
-\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d}{d x} y\right]=\lambda y, \quad\left[p(x)=1-x^{2}, \quad q(x)=0, \quad w(x)=1\right]
$$

The eigenvalues are $\lambda_{n}=n(n+1)$ for $n=1,2, \ldots$, and the eigenfunctions solve Legendre's equation:

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

For each n, one solution is a degree- n "Legendre polynomial"

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right] .
$$

They are orthogonal with respect to the inner product $\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) d x$.
It can be checked that

$$
\left\langle P_{m}, P_{n}\right\rangle=\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1} \delta_{m n}
$$

By orthogonality, every function f, continuous on $-1<x<1$, can be expressed using Legendre polynomials:

$$
f(x)=\sum_{n=0}^{\infty} c_{n} P_{n}(x), \quad \text { where } \quad c_{n}=\frac{\left\langle f, P_{n}\right\rangle}{\left\langle P_{n}, P_{n}\right\rangle}=\left(n+\frac{1}{2}\right)\left\langle f, P_{n}\right\rangle
$$

Legendre polynomials

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) \\
& P_{6}(x)=\frac{1}{8}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right) \\
& P_{7}(x)=\frac{1}{16}\left(429 x^{7}-693 x^{5}+315 x^{3}-35 x\right)
\end{aligned}
$$

Parametric Bessel's differential equation

Consider the following Sturm-Liouville problem on [0, a]:

$$
-\frac{d}{d x}\left(x y^{\prime}\right)-\frac{\nu^{2}}{x} y=\lambda x y, \quad\left[p(x)=x, \quad q(x)=-\frac{\nu^{2}}{x}, \quad w(x)=x\right] .
$$

For a fixed ν, the eigenvalues are $\lambda_{n}=\omega_{n}^{2}:=\alpha_{n}^{2} / a^{2}$, for $n=1,2, \ldots$.
Here, α_{n} is the $n^{\text {th }}$ positive root of $J_{\nu}(x)$, the Bessel functions of the first kind of order ν.
The eigenfunctions solve the parametric Bessel's equation:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda x^{2}-\nu^{2}\right) y=0
$$

Fixing ν, for each n there is a solution $J_{\nu n}(x):=J_{\nu}\left(\omega_{n} x\right)$.
They are orthogonal with repect to the inner product $\langle f, g\rangle=\int_{0}^{a} f(x) g(x) x d x$.
It can be checked that

$$
\left\langle J_{\nu n}, J_{\nu m}\right\rangle=\int_{0}^{a} J_{\nu}\left(\omega_{n} x\right) J_{\nu}\left(\omega_{m} x\right) x d x=0, \quad \text { if } n \neq m
$$

By orthogonality, every continuous function $f(x)$ on $[0, a]$ can be expressed in a "Fourier-Bessel" series:

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} J_{\nu}\left(\omega_{n} x\right), \quad \text { where } \quad c_{n}=\frac{\left\langle f, J_{\nu n}\right\rangle}{\left\langle J_{\nu n}, J_{\nu n}\right\rangle}
$$

Bessel functions (of the first kind)

$$
J_{\nu}(x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{1}{m!(\nu+m)!}\left(\frac{x}{2}\right)^{2 m+\nu}
$$

Fourier-Bessel series from $J_{0}(x)$

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} J_{0}\left(\omega_{n} x\right), \quad J_{0}(x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{1}{(m!)^{2}}\left(\frac{x}{2}\right)^{2 m}
$$

Figure: First 5 solutions to $\left(x y^{\prime}\right)^{\prime}=-\lambda x^{2}$.

Fourier-Bessel series from $J_{3}(x)$

The Fourier-Bessel series using $J_{3}(x)$ of the function $f(x)=\left\{\begin{array}{ll}x^{3} & 0<x<10 \\ 0 & x>10\end{array}\right.$ is

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} J_{3}\left(\omega_{n} x / 10\right), \quad J_{3}(x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{1}{m!(3+m)!}\left(\frac{x}{2}\right)^{2 m+3} .
$$

Figure: First 5 partial sums to the Fourier-Bessel series of $f(x)$ using J_{3}

Chebyshev's differential equation

Consider the following Sturm-Liouville problem on $[-1,1]$:

$$
-\frac{d}{d x}\left[\sqrt{1-x^{2}} \frac{d}{d x} y\right]=\lambda \frac{1}{\sqrt{1-x^{2}}} y, \quad\left[p(x)=\sqrt{1-x^{2}}, \quad q(x)=0, \quad w(x)=\frac{1}{\sqrt{1-x^{2}}}\right] .
$$

The eigenvalues are $\lambda_{n}=n^{2}$ for $n=1,2, \ldots$, and the eigenfunctions solve Chebyshev's equation:

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

For each n, one solution is a degree- n "Chebyshev polynomial," defined recursively by

$$
T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

They are orthogonal with repect to the inner product $\langle f, g\rangle=\int_{-1}^{1} \frac{f(x) g(x)}{\sqrt{1-x^{2}}} d x$.
It can be checked that

$$
\left\langle T_{m}, T_{n}\right\rangle=\int_{-1}^{1} \frac{T_{m}(x) T_{n}(x)}{\sqrt{1-x^{2}}} d x=\left\{\begin{array}{cl}
\frac{1}{2} \pi \delta_{m n} & m \neq 0, n \neq 0 \\
\pi & m=n=0
\end{array}\right.
$$

By orthogonality, every function $f(x)$, continuous for $-1<x<1$, can be expressed using Chebyshev polynomials:

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} T_{n}(x), \quad \text { where } \quad c_{n}=\frac{\left\langle f, T_{n}\right\rangle}{\left\langle T_{n}, T_{n}\right\rangle}=\frac{2}{\pi}\left\langle f, T_{n}\right\rangle, \text { if } n, m>0
$$

Chebyshev polynomials (of the first kind)

$$
\begin{array}{ll}
T_{0}(x)=1 & T_{4}(x)=8 x^{4}-8 x^{2}+1 \\
T_{1}(x)=x & T_{5}(x)=16 x^{5}-20 x^{3}+5 x \\
T_{2}(x)=2 x^{2}-1 & T_{6}(x)=32 x^{6}-48 x^{4}+18 x^{2}-1 \\
T_{3}(x)=4 x^{3}-3 x & T_{7}(x)=64 x^{7}-112 x^{5}+56 x^{3}-7 x
\end{array}
$$

Hermite's differential equation

Consider the following Sturm-Liouville problem on $(-\infty, \infty)$:

$$
-\frac{d}{d x}\left[e^{-x^{2}} \frac{d}{d x} y\right]=\lambda e^{-x^{2}} y, \quad\left[p(x)=e^{-x^{2}}, \quad q(x)=0, \quad w(x)=e^{-x^{2}}\right]
$$

The eigenvalues are $\lambda_{n}=2 n$ for $n=1,2, \ldots$, and the eigenfunctions solve Hermite's equation:

$$
y^{\prime \prime}-2 x y^{\prime}+2 n y=0
$$

For each n, one solution is a degree- n "Hermite polynomial," defined by

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}=\left(2 x-\frac{d}{d x}\right)^{n} \cdot 1
$$

They are orthogonal with repect to the inner product $\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) e^{-x^{2}} d x$.
It can be checked that

$$
\left\langle H_{m}, H_{n}\right\rangle=\int_{-\infty}^{\infty} H_{m}(x) H_{n}(x) e^{-x^{2}} d x=\sqrt{\pi} 2^{n} n!\delta_{m n}
$$

By orthogonality, every function $f(x)$ satisfying $\int_{-\infty}^{\infty} f^{2} e^{-x^{2}} d x<\infty$ can be expressed using Hermite polynomials:

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} H_{n}(x), \quad \text { where } \quad c_{n}=\frac{\left\langle f, H_{n}\right\rangle}{\left\langle H_{n}, H_{n}\right\rangle}=\frac{\left\langle f, H_{n}\right\rangle}{\sqrt{\pi} 2^{n} n!}
$$

Hermite polynomials

$$
\begin{array}{ll}
H_{0}(x)=1 & H_{4}(x)=16 x^{4}-48 x^{2}+12 \\
H_{1}(x)=2 x & H_{5}(x)=32 x^{5}-160 x^{3}+120 x \\
H_{2}(x)=4 x^{2}-2 & H_{6}(x)=64 x^{6}-480 x^{4}+720 x^{2}-120 \\
H_{3}(x)=8 x^{3}-12 x & H_{7}(x)=128 x^{7}-1344 x^{5}+3360 x^{3}-1680 x
\end{array}
$$

Hermite (physicists') Polynomials

Hermite functions

The Hermite functions can be defined from the Hermite polynomials as

$$
\psi_{n}(x)=\left(2^{n} n!\sqrt{\pi}\right)^{-\frac{1}{2}} e^{-\frac{x^{2}}{2}} H_{n}(x)=(-1)^{n}\left(2^{n} n!\sqrt{\pi}\right)^{-\frac{1}{2}} e^{-\frac{x^{2}}{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

They are orthonormal with respect to the inner product

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) d x
$$

Every real-valued function f such that $\int_{-\infty}^{\infty} f^{2} d x<\infty$ "can be expressed uniquely" as

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} \psi_{n}(x) d x, \quad \text { where } c_{n}=\left\langle f, \psi_{n}\right\rangle=\int_{-\infty}^{\infty} f(x) \psi_{n}(x) d x
$$

These are solutions to the time-independent Schrödinger ODE: $-y^{\prime \prime}+x^{2} y=(2 n+1) y$.

