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Partial differential equations

Definition

Let u(x , t) be a 2-variable function. A partial differential equation (PDE) is an equation
involving u, x , t, and the partial derivatives of u.

PDEs vs. ODEs

ODEs have a unifying theory of existence and uniqueness of solutions.

PDEs have no such theory.

PDEs arise from physical phenomena and modeling.
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Motivation

The diffusion equation is a PDE that can model the motion of a number of physical
processes such as:

smoke in the air,

dye in a solution,

heat through a medium.

Let u(x , y , z, t) be the concentration (or temperature, etc.) at position (x , y , z) and time t.

Let F be the vector field that describes the flow of smoke (or heat, etc.)

Goal. Relate how u varies with respect to time to how it varies in space.

Definition

The diffusion equation (or heat equation) is the PDE

∂u

∂t
= k∇2u︸︷︷︸

Laplacian

= k∇ · ∇u︸ ︷︷ ︸
div(∇u)

= k

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= k(uxx + uyy + uzz ).
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Fourier’s law of diffusion

Material flows from regions of greater to lesser concentration, at a rate propotional to the
gradient:

F = −k∇u.
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Derivation

Steps to deriving the diffusion equation

1. Fourier’s law: F = −k∇u.

2. Relate F and
∂u

∂t
by the divergence theorem:
˚

D
div F dV = “Flux through S” =

‹
(F · n) dS .

By the divergence theorem,

˚
D

div F dV = −
∂

∂t

˚
D
u dV = −

˚
D

∂u

∂t
dV .

holds for any region D. Thus,

div F = −
∂u

∂t
.

Now plug this into F = −k∇u:

−
∂u

∂t
= div F = ∇ · F = ∇ · (−k∇u) =⇒

∂u

∂t
= k∇2u.

In one-dimension, this reduces to
∂u

∂t
= k

∂2u

∂x2
, or just ut = kuxx .
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Diffusion in one dimension (non-uniform)

Consider a pipe of length L containing a medium. The diffusion equation is the PDE

∂u

∂t
=

∂

∂x

(
D(u, x)

∂u

∂x

)
, where

u(x , t) = density of the diffusing material at position x and time t

D(u, x) = collective diffusion coefficient for density u and position x .

Assuming that the diffusion coefficient is constant, the diffusion equation becomes

ut = c2uxx , c2 = −D.

Heat flow in one dimension (non-uniform)

Consider a bar of length L that is insulated along its interior. The heat equation is the PDE

ρ(x)σ(x)
∂u

∂t
=

∂

∂x

(
κ(x)

∂u

∂x

)
, where

u(x , t) = temperature of the bar at position x and time t

ρ(x) = density of the bar at position x

σ(x) = specific heat at position x

κ(x) = thermal conductivity at position x .

Assuming that the bar is “uniform” (i.e., ρ, σ, and κ are constant), the heat equation is

ut = c2uxx , c2 = κ/(ρσ).
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Adding boundary and initial conditions

Example 1a

The following is a boundary / initial value problem (B/IVP) for the heat equation in one
dimension:

ut = c2uxx︸ ︷︷ ︸
heat equation (PDE)

, u(0, t) = u(L, t) = 0︸ ︷︷ ︸
boundary conditions

u(x , 0) = x(L− x)︸ ︷︷ ︸
initial condition

.

The following is a picture of what a solution looks like over time.
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Solving PDEs

PDEs, like ODEs, can be homogeneous or inhomogeneous. Like ODEs, we’ll solve them by:

1. Solving the related homogeneous equation

2. Finding a particular solution (almost always a “steady-state” solution)

3. Adding these two solutions together.

Most common homogeneous PDEs can be solved by a method called separation of variables.

Separation of variables (in one dimension)

How to solve a PDE like

ut = c2uxx︸ ︷︷ ︸
heat equation (PDE)

, u(0, t) = u(L, t) = 0︸ ︷︷ ︸
boundary conditions

u(x , 0) = x(L− x)︸ ︷︷ ︸
initial condition

.

1. Assume that there is a solution of the form u(x , t) = f (x)g(t).

2. Plug this back into the PDE and solve for f (x) and g(t). (Separate variables!)

3. You’ll get a BVP for f (x) and an ODE for g(t).

4. Solve these ODEs. You’ll get a solution un(x , t) for each n = 0, 1, 2, . . . .

5. By superposition, the general solution is u(x , t) =
∞∑
n=0

cn un(x , t).

6. Use the initial condition to find the cn’s.

M. Macauley (Clemson) Lecture 5.1: Fourier’s law and the diffusion equation Advanced Engineering Mathematics 8 / 11

mailto:macaule@clemson.edu


Solving the heat equation

Example 1a

Recall the following is a boundary / initial value problem (B/IVP) for the heat equation in
one dimension:

ut = c2uxx︸ ︷︷ ︸
heat equation (PDE)

, u(0, t) = u(L, t) = 0︸ ︷︷ ︸
boundary conditions

u(x , 0) = x(L− x)︸ ︷︷ ︸
initial condition

.
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Solving the heat equation

Example 1a (cont.)

The general solution to the BVP for the heat equation

ut = c2uxx︸ ︷︷ ︸
heat equation (PDE)

, u(0, t) = u(L, t) = 0︸ ︷︷ ︸
boundary conditions

u(x , 0) = x(L− x)︸ ︷︷ ︸
initial condition

.

is u(x , t) =
∞∑
n=1

bn sin
(
nπx
L

)
e−(cnπ/L)2t . Finally, we’ll use the initial condition.
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Solving the heat equation

Example 1a (cont.)

The particular solution to the heat equation that satisfies the following boundary and initial
conditions

ut = c2uxx︸ ︷︷ ︸
heat equation (PDE)

, u(0, t) = u(L, t) = 0︸ ︷︷ ︸
boundary conditions

u(x , 0) = x(L− x)︸ ︷︷ ︸
initial condition

is u(x , t) =
∞∑
n=1

4
(
L
nπ

)3
[1−(−1)n] sin

(
nπx
L

)
e−(cnπ/L)2t .
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