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Partial differential equations

Definition
Let u(x, t) be a 2-variable function. A partial differential equation (PDE) is an equation
involving u, x, t, and the partial derivatives of u.

PDEs vs. ODEs

ODEs have a unifying theory of existence and uniqueness of solutions.

PDEs have no such theory.

PDEs arise from physical phenomena and modeling.
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Motivation

The diffusion equation is a PDE that can model the motion of a number of physical
processes such as:

m smoke in the air,
m dye in a solution,

m heat through a medium.

Let u(x,y, z, t) be the concentration (or temperature, etc.) at position (x,y, z) and time t.

Let F be the vector field that describes the flow of smoke (or heat, etc.)

Goal. Relate how u varies with respect to time to how it varies in space.

Definition
The diffusion equation (or heat equation) is the PDE
ou 8u  9%u  d%u

— = kVZu :kV~Vu:k(—+
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Laplacian div(Vu)
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Fourier's law of diffusion

Material flows from regions of greater to lesser concentration, at a rate propotional to the
gradient:

F=—kVu.
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Derivation

Steps to deriving the diffusion equation

1. Fourier’s law: F = —kVu.

0
2. Relate F and 8—‘: by the divergence theorem:

// divF dV = "Flux through §" = #(F -n)dS.
D

By the divergence theorem,

//DdideV:—%///Dudvz_//D%dV.

holds for any region D. Thus,

ou
divF = ——.
iv Bt
Now plug this into F = —kVu:
9] 9]
—ait’ —dvF=V -F=V.(—kVu) = 5: = kV2u.

0%u

——, or just Uy = Kuxy.
Ox?

. : . Ju
In one-dimension, this reduces to 5 =k
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Diffusion in one dimension (non-uniform)

Consider a pipe of length L containing a medium. The diffusion equation is the PDE

ou 1o} Ou
i B—X(D(u,x)a—x), where
u(x,t) = density of the diffusing material at position x and time t

D(u, x) collective diffusion coefficient for density u and position x.
Assuming that the diffusion coefficient is constant, the diffusion equation becomes

ur = c:zuxx7 2 =-D.

Heat flow in one dimension (non-uniform)

Consider a bar of length L that is insulated along its interior. The heat equation is the PDE
0 0 0
p(x)cr(x)a—l: = g(n(x)a—z), where

u(x,t) = temperature of the bar at position x and time t

p(x) = density of the bar at position x
o(x) = specific heat at position x
k(x) = thermal conductivity at position x.

Assuming that the bar is “uniform” (i.e., p, o, and & are constant), the heat equation is

ur = P, c® = k/(po).

4
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Adding boundary and initial conditions

Example 1a

The following is a boundary / initial value problem (B/IVP) for the heat equation in one
dimension:

ur = i , u(0,t) = u(L,t) =0 u(x,0) = x(L — x) .
—_———— —_——— | S S —
heat equation (PDE) boundary conditions initial condition

The following is a picture of what a solution looks like over time.

¢ £=( H t=4
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Solving PDEs
PDEs, like ODEs, can be homogeneous or inhomogeneous. Like ODEs, we'll solve them by:

1. Solving the related homogeneous equation
2. Finding a particular solution (almost always a “steady-state” solution)
3. Adding these two solutions together.

Most common homogeneous PDEs can be solved by a method called separation of variables.

Separation of variables (in one dimension)

How to solve a PDE like

ur = i u(0,t) =u(L,t)=0 u(x,0) = x(L —x) .
—— — ————— —_———
heat equation (PDE) boundary conditions initial condition

1. Assume that there is a solution of the form u(x, t) = f(x)g(t).
2. Plug this back into the PDE and solve for f(x) and g(t). (Separate variables!)
3. You'll get a BVP for f(x) and an ODE for g(t).
4. Solve these ODEs. You'll get a solution un(x,t) for each n=0,1,2,....
(oo}
By superposition, the general solution is u(x,t) = Z cn un(x, t).
n=0

@

6. Use the initial condition to find the c,'s.

v
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Solving the heat equation

Example 1a

Recall the following is a boundary / initial value problem (B/IVP) for the heat equation in
one dimension:

2
Ut = CUxx , u(0,t) = u(L,t) =0 u(x,0) = x(L —x) .
heat equation (PDE) boundary conditions initial condition
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Solving the heat equation

Example 1a (cont.)

The general solution to the BVP for the heat equation

ur = Pl , u(0,t) = u(L,t) =0 u(x,0) = x(L —x) .
N—— N—_— ——o N—_— —
heat equation (PDE) boundary conditions initial condition

o0

. . _ 2 . , . ..

is u(x,t) = E bn sm(ﬂl_x) e~ (en/L)%t, Finally, we'll use the initial condition.
n=1
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Solving the heat equation

Example 1a (cont.)
The particular solution to the heat equation that satisfies the following boundary and initial

conditions
ur = Pl , u(0,t) = u(L,t) =0 u(x,0) = x(L — x)
N——r — —— — N——’
heat equation (PDE) boundary conditions initial condition

is u(x,t) = iz;(#f[l_(_l)n] Sin(ﬂLx) e—(cnﬁ/L)Zt_
n=1
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B) High Frequency:

A) Low Frequency:
Fast decay

Slow decay
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