Lecture 5.2: Boundary conditions for the heat equation

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Last time: Example 1a

The solution to the following B/IVP for the heat equation:

$$u_t = c^2 u_{xx},$$
 $u(0, t) = u(1, t) = 0,$ $u(x, 0) = x(1 - x).$

is
$$u(x,t) = \sum_{n=1}^{\infty} \frac{4(1-(-1)^n)}{n^3\pi^3} \sin(n\pi x) e^{-(cn\pi)^2 t}.$$

This time: Example 1b

$$u_t = c^2 u_{xx},$$
 $u(0, t) = u(1, t) = 32,$ $u(x, 0) = x(1 - x) + 32$

Last time: Example 1a

The solution to the following B/IVP for the heat equation:

$$u_t = c^2 u_{xx},$$
 $u(0, t) = u(1, t) = 0,$ $u(x, 0) = x(1 - x).$

is
$$u(x,t) = \sum_{n=1}^{\infty} \frac{4(1-(-1)^n)}{n^3\pi^3} \sin(n\pi x) e^{-(cn\pi)^2 t}.$$

This time: Example 1c

$$u_t = c^2 u_{xx},$$
 $u(0, t) = 32,$ $u(1, t) = 42,$ $u(x, 0) = x(1 - x) + 32 + 10x.$

A familiar theme

Summary

To solve the initial / boundary value problem

$$u_t = c^2 u_{xx},$$
 $u(0, t) = a,$ $u(L, t) = b,$ $u(x, 0) = h(x),$

first solve the related homogeneous problem, then add this to the steady-state solution $u_{ss}(x) = a + \frac{b-a}{L}x$.

Neumann boundary conditions (type 2)

Example 2

$$u_t = c^2 u_{xx}, \qquad u_x(0,t) = u_x(1,t) = 0, \qquad u(x,0) = x(1-x).$$

Neumann boundary conditions (type 2)

Example 2 (cont.)

The general solution to the following BVP for the heat equation:

$$u_t = c^2 u_{xx}, \qquad u_x(0,t) = u_x(1,t) = 0, \qquad u(x,0) = x(1-x).$$

is $u(x, t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\pi x) e^{-(cn\pi)^2 t}$. Now, we'll solve the remaining IVP.

Mixed boundary conditions

Example 1.5

$$u_t = c^2 u_{xx},$$
 $u(0, t) = u_x(1, t) = 0,$ $u(x, 0) = 5\sin(\pi x/2).$

Periodic boundary conditions

Example

$$u_t = c^2 u_{xx},$$
 $u(0, t) = u(2\pi, t),$ $u(x, 0) = 2 + \cos x - 3\sin 2x.$