Lecture 5.3: The transport and wave equations

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Motivation

Some common one-dimensional PDEs

We've seen the heat equation: $u_{t}=c^{2} u_{x x}$. In this lecture, we will introduce the transport equation, from which we will derive the wave equation: $u_{t t}=c^{2} u_{x x}$.

Transport left

Example 1

Consider the following PDE involving a function $u(x, t)$:

$$
\frac{\partial u}{\partial t}-c \frac{\partial u}{\partial x}=0 .
$$

Transport right

Example 2

Consider the following PDE involving a function $u(x, t)$:

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

The wave equation

Example 3

Consider the following PDE involving a function $u(x, t)$:

$$
\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) u=\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

The three most common two-variable PDEs

Summary

Let $u(x, t)$ be a function of position x and time t. Then

- the heat equation is $u_{t}=c^{2} u_{x x}$,
- the wave equation is $u_{t t}=c^{2} u_{x x}$.

One more

Let $u(x, y)$ be a function of position (x, y). Then

- Laplace's equation is $u_{x x}+u_{y y}=0$.

Example 3

Solve the following B/IVP for the wave equation:

$$
u_{t t}=c^{2} u_{x x}, \quad u(0, t)=u(L, t)=0, \quad u(x, 0)=x(L-x), \quad u_{t}(x, 0)=1
$$

Example 3 (cont.)

The general solution to the following BVP for the wave equation:

$$
u_{t t}=c^{2} u_{x x}, \quad u(0, t)=u(L, t)=0, \quad u(x, 0)=x(L-x), \quad u_{t}(x, 0)=1
$$

is $u(x, t)=\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{c n \pi t}{L}\right)+b_{n} \sin \left(\frac{c n \pi t}{L}\right)\right] \sin \left(\frac{n \pi x}{L}\right)$. Now, we'll solve the remaining IVP.

