Lecture 5.4: The Schrödinger equation

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Some history

Newton's second law of motion, $m x^{\prime \prime}(t)=F(x)$, fails on the atomic scale.
According to quantum mechanics, particles have no definite position or velocity. Instead, their states are described probabilistically by a wave function $\Psi(x, t)$, where

$$
\int_{a}^{b}|\Psi(x, t)|^{2} d x=\text { Probability of the particle being in }[a, b] \text { at time } t
$$

Motivation

The wave function is governed by the following PDE, called Schrödinger's equation:

$$
i \hbar \Psi_{t}=-\frac{\hbar^{2}}{2 m} \Psi_{x x}+V(x) \Psi
$$

where $V(x)=$ potential energy, $m=$ mass, and $\hbar=\frac{h}{2 \pi}$, where $h \approx 6.625 \cdot 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$ is Planck's constant. The linear operator $H=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)$ is the Hamiltonian.

The special case of $V=0$ (free particle subject to no forces) is the free Schrödinger equation

$$
i \hbar \Psi_{t}=-\frac{\hbar^{2}}{2 m} \Psi_{x x}
$$

Solving the Schrödinger equation

To solve $i \hbar \Psi_{t}=H \Psi$, i.e.,

$$
i \hbar \Psi_{t}=-\frac{\hbar^{2}}{2 m} \Psi_{x x}+V(x) \Psi
$$

assume that $\Psi(x, t)=f(x) g(t)$.

The infinite potential well

Example

The wave function of a free particle of mass m confined to $0<x<L$ is described by the boundary value problem

$$
i \hbar \Psi_{t}=-\frac{\hbar^{2}}{2 m} \Psi_{x x}, \quad \Psi(0, t)=\Psi(L, t)=0 .
$$

Summary

Consider the Schrödinger equation on a bounded domain,

$$
i \hbar \Psi_{t}=-\frac{\hbar^{2}}{2 m} \Psi_{x x}+V(x) \Psi, \quad 0<x<L .
$$

For each $n=1,2, \ldots$, we have a solution of the form

$$
\Psi_{n}(x, t)=f_{n}(x) e^{-i E_{n} t / \hbar}, \quad E_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}}
$$

where $f_{n}(x)$ solves the time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{f_{n}^{\prime \prime}}{f_{n}}+V(x)=E
$$

The solution is the superposition and time-evolution given by

$$
\Psi(x, t)=\sum_{n=1}^{\infty} f_{n}(x) e^{-i E_{n} t / \hbar}, \quad \text { and } \quad \int_{0}^{L}|\Psi(x, t)|^{2} d x=1
$$

In the special case of the free Schrödinger equation $(V(x)=0)$ and the infinite potential well, this becomes

$$
\Psi(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-i E_{n} t / \hbar} .
$$

