Lecture 6.2: Semi-infinite domains and the reflection method

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Semi-infinite domain, Dirichlet boundary conditions

Example 1

Solve the following B/IVP for the heat equation where $x>0$ and $t>0$:

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=0, \quad u(x, 0)=h(x) .
$$

To solve this, we'll extend $h(x)$ to be an odd function $h_{0}(x)$:

$$
h_{0}(x)=h(x) \quad \text { if } x>0, \quad h_{0}(x)=-h(-x) \quad \text { if } x<0, \quad h_{0}(0)=0
$$

Example 1 (modified)

Solve the following Cauchy problem for the heat equation, where $t>0$:

$$
v_{t}=c^{2} v_{x x}, \quad v(x, 0)=h_{0}(x) .
$$

In the previous lecture, we learned that the solution to this Cauchy problem is

$$
v(x, t)=\int_{-\infty}^{\infty} h_{0}(y) G(x-y, t) d y, \quad \text { where } \quad G(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-x^{2} /(4 k t)}
$$

Semi-infinite domain, Neumann boundary conditions

Example 2

Solve the following B/IVP for the heat equation where $x>0$ and $t>0$: the real line:

$$
u_{t}=c^{2} u_{x x}, \quad u_{x}(0, t)=0, \quad u(x, 0)=h(x)
$$

To solve this, we'll extend $h(x)$ to be an even function $h_{0}(x)$:

$$
h_{0}(x)=h(x) \quad \text { if } x \geq 0, \quad h_{0}(x)=h(-x) \quad \text { if } x<0
$$

Example 2 (modified)

Solve the following Cauchy problem for the heat equation, where $t>0$:

$$
v_{t}=c^{2} v_{x x}, \quad v(x, 0)=h_{0}(x) .
$$

As in the previous example, the solution to this Cauchy problem is

$$
v(x, t)=\int_{-\infty}^{\infty} h_{0}(y) G(x-y, t) d y, \quad \text { where } \quad G(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-x^{2} /(4 k t)}
$$

The wave equation on a semi-infinite domain

Example 3

Solve the following B/IVP for the wave equation where $x>0$ and $t>0$:

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=0, \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
$$

Comparing the heat and wave equations on a semi-infinite domain

Dirichlet BCs

The solution to the following $\mathrm{B} / \mathrm{IVP}$ for the heat equation

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=0, \quad u(x, 0)=h(x)
$$

where $x>0$ and $t>0$ is

$$
u(x, t)=\int_{0}^{\infty}[G(x-y, t)-G(x+y, t)] h(y) d y
$$

The solution to the following $B /$ IVP for the wave equation where

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=0, \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
$$

where $x>0$ and $t>0$ is

$$
u(x, t)=\frac{1}{2}(f(x-c t)+f(x+c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s \quad \text { if } x>c t
$$

and

$$
u(x, t)=\frac{1}{2}(f(x-c t)+f(x+c t))+\frac{1}{2 c} \int_{c t-s}^{c t+x} g(s) d s \quad \text { if } 0<x<c t .
$$

