Lecture 6.3: Solving PDEs with Laplace transforms

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Introduction

A function $f:[0, \infty) \rightarrow \mathbb{C}$ has exponential order, if $|f(t)| \leq c e^{a t}$ holds for sufficiently large t, where $a, c>0$.

Definition

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a piecewise continuous function of exponential order. The Laplace transform of f is

$$
(\mathcal{L} f)(s)=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

Property	time-domain	frequency domain
Linearity	$c_{1} f_{1}(t)+c_{2} f_{2}(t)$	$c_{1} F_{1}(s)+c_{2} F_{2}(s)$
Time / phase-shift	$f(t-c)$	$e^{-c s} F(s)$
Multiplication by exponential	$e^{c t} f(t)$	$F(s-c)$
Dilation by $c>0$	$f(c t)$	$\frac{1}{c} F(s / c)$
Differentiation	$\frac{d f(t)}{d t}$	$s F(s)-f(0)$
Multiplication by t	$t f(t)$	$-F^{\prime}(s)$
Convolution	$f_{1}(t) * f_{2}(t)$	$F_{1}(s) \cdot F_{2}(s)$
	$f_{1}(t) \cdot f_{2}(t)$	$\left(F_{1} * F_{2}\right)(s)$

Solving an ODE with a Laplace transform

Example 1

Solve the initial value problem

$$
u^{\prime \prime}+u=0, \quad u(0)=0, \quad u^{\prime}(0)=1
$$

Laplace transform of a multivariate function

Definition

For a function $u(x, t)$ of two variables, define its Laplace transform by

$$
(\mathcal{L} u)(x, s)=U(x, s)=\int_{0}^{\infty} u(x, t) e^{-s t} d t
$$

Remark

The Laplace transform turns t-derivatives into multiplication, and leaves x-derivatives unchanged:

- $\left(\mathcal{L} u_{x}\right)(x, s)=U_{x}(x, s)$,
- $\left(\mathcal{L} u_{x x}\right)(x, s)=U_{x x}(x, s)$,
- $\left(\mathcal{L} u_{t}\right)(x, s)=s U(x, s)-u(x, 0)$,
- $\left(\mathcal{L} u_{t t}\right)(x, s)=s^{2} U(x, s)-s u(x, 0)-u_{x}(x, 0)$.

Convolution

Definition

The convolution of $f(t)$ and $g(t)$ is the function $(f * g)(t):=\int_{0}^{t} f(u) g(t-u) d u$.

Properties

- $f * g=g * f$,
- $f *(g * h)=(f * g) * h$.

Convolution theorem

For functions f and g,

$$
\mathcal{L}(f * g)(s)=F(s) G(s) .
$$

By taking the inverse Fourier transform of both sides, it follows that

$$
(f * g)(t)=\mathcal{L}^{-1}(F(s) G(s)) .
$$

Solving a PDE with a Laplace transform

Example 2: the diffusion equation on a semi-infinite domain

Let $u(x, t)$ be the concentration of a chemical dissolved in a fluid, where $x>0$. Consider the following $\mathrm{B} / \mathrm{IVP}$ problem for the diffusion equation:

$$
u_{t}=u_{x x}, \quad u(0, t)=1, \quad u(x, 0)=0, \quad u(x, t) \text { bounded } .
$$

Solving a PDE with a Laplace transform

Example 3: the diffusion equation on a semi-infinite domain

Let $u(x, t)$ be the concentration of a chemical dissolved in a fluid, where $x>0$. Consider the following $\mathrm{B} / \mathrm{IVP}$ problem for the diffusion equation:

$$
u_{t}=u_{x x}, \quad u(0, t)=f(t), \quad u(x, 0)=0, \quad u(x, t) \text { bounded. }
$$

