Lecture 6.3: Solving PDEs with Laplace transforms

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Introduction

A function $f: [0, \infty) \to \mathbb{C}$ has exponential order, if $|f(t)| \le ce^{at}$ holds for sufficiently large t, where a, c > 0.

Definition

Let $f: [0,\infty) \to \mathbb{R}$ be a piecewise continuous function of exponential order. The Laplace transform of f is

$$(\mathcal{L}f)(s)=F(s)=\int_0^\infty f(t)e^{-st}dt.$$

Property	time-domain	frequency domain
Linearity	$c_1 f_1(t) + c_2 f_2(t)$	$c_1F_1(s)+c_2F_2(s)$
Time / phase-shift	f(t-c)	$e^{-cs}F(s)$
Multiplication by exponential	$e^{ct}f(t)$	F(s-c)
Dilation by $c > 0$	f(ct)	$\frac{1}{c}F(s/c)$
Differentiation	$rac{df(t)}{dt}$	sF(s)-f(0)
Multiplication by t	tf(t)	-F'(s)
Convolution	$f_1(t) * f_2(t)$	$F_1(s) \cdot F_2(s)$
	$f_1(t) \cdot f_2(t)$	$(F_1 * F_2)(s)$

M. Macauley (Clemson)

Solving an ODE with a Laplace transform

Example 1

Solve the initial value problem

$$u'' + u = 0,$$
 $u(0) = 0,$ $u'(0) = 1.$

Laplace transform of a multivariate function

Definition

For a function u(x, t) of two variables, define its Laplace transform by

$$(\mathcal{L}u)(x,s) = U(x,s) = \int_0^\infty u(x,t)e^{-st} dt.$$

Remark

The Laplace transform turns *t*-derivatives into multiplication, and leaves *x*-derivatives unchanged:

- $\square (\mathcal{L}u_x)(x,s) = U_x(x,s),$
- $(\mathcal{L}u_{xx})(x,s) = U_{xx}(x,s),$

•
$$(\mathcal{L}u_{tt})(x,s) = s^2 U(x,s) - su(x,0) - u_x(x,0).$$

Convolution

Definition

The convolution of
$$f(t)$$
 and $g(t)$ is the function $(f * g)(t) := \int_0^t f(u)g(t - u) du$.

Properties

Convolution theorem

For functions f and g,

$$\mathcal{L}(f * g)(s) = F(s)G(s).$$

By taking the inverse Fourier transform of both sides, it follows that

$$(f * g)(t) = \mathcal{L}^{-1}(F(s)G(s)).$$

Solving a PDE with a Laplace transform

Example 2: the diffusion equation on a semi-infinite domain

Let u(x, t) be the concentration of a chemical dissolved in a fluid, where x > 0. Consider the following B/IVP problem for the diffusion equation:

 $u_t = u_{xx},$ u(0, t) = 1, u(x, 0) = 0, u(x, t) bounded.

Solving a PDE with a Laplace transform

Example 3: the diffusion equation on a semi-infinite domain

Let u(x, t) be the concentration of a chemical dissolved in a fluid, where x > 0. Consider the following B/IVP problem for the diffusion equation:

 $u_t = u_{xx},$ u(0, t) = f(t), u(x, 0) = 0, u(x, t) bounded.