Lecture 7.1: Harmonic functions and Laplace's equation

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/
Math 4340, Advanced Engineering Mathematics

Higher dimensional PDEs

Recall the del operator ∇ from vector calculus:

$$
\nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right), \quad \Delta:=\nabla \cdot \nabla=\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}} .
$$

$\ln \mathbb{R}^{n}$

- Heat equation: $u_{t}=c^{2} \Delta u$
- Wave equation: $u_{t t}=c^{2} \Delta u$

Remark

Steady state solutions:

- occur for the heat equation (heat dissipates)
- do not occur for the wave equation (waves propagate)

Definition

A steady-state solution means $u_{t}=0$. Thus, all steady-state solutions satisfy $u_{t}=c^{2} \Delta u=0$, i.e.,

$$
\Delta u=0 \quad \Longrightarrow \quad \frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2} u}{\partial x_{n}^{2}}=0 .
$$

A function u is harmonic if $\Delta u=0$.

Properties of harmonic functions

Key properties

- The graphs of harmonic functions $(\Delta f=0)$ are as flat as possible.
- If f is harmonic, then for any closed bounded region R, the function f achieves its minimum and maximum values on the boundary, ∂R.

Examples of harmonic functions

Solving Laplace's equation on a bounded domain

Example 1a

Solve the following BVP for Laplace's equation:

$$
u_{x x}+u_{y y}=0, \quad u(0, y)=u(x, 0)=u(\pi, y)=0, \quad u(x, \pi)=x(\pi-x)
$$

Solving Laplace's equation on a bounded domain

Example 1b

Solve the following BVP for Laplace's equation:

$$
u_{x x}+u_{y y}=0, \quad u(0, y)=u(x, 0)=u(x, \pi)=0, \quad u(\pi, y)=y(\pi-y)
$$

Solving Laplace's equation on a bounded domain

Example 1c

Solve the following BVP for Laplace's equation:

$$
u_{x x}+u_{y y}=0, \quad u(0, y)=u(x, 0)=0, \quad u(x, \pi)=x(\pi-x), \quad u(\pi, y)=y(\pi-y)
$$

Unbounded domains and Fourier transforms

Example 2

Solve the following BVP for Laplace's equation, where $x \in \mathbb{R}$ and $y>0$, and the solution u is bounded as $y \rightarrow \infty$:

$$
u_{x x}+u_{y y}=0, \quad u(x, 0)=f(x)
$$

