Lecture 7.2: Eigenvalues and eigenfunctions of the Laplacian

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Overview

The Laplacian is the differenital operator

$$
\Delta=\nabla^{2}:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

In the previous lecture, we found the kernel of this operator (for $n=2$) under various boundary conditions.

This amounted to solving a PDE called Laplace's equation:

$$
\Delta u=0 .
$$

In this lecture, we will find the eigenvalues and eigenfunctions of Δ.

This amounts to solving a PDE called the Helmholtz equation:

$$
\Delta u=-\lambda u .
$$

This equation arises when solving the heat and wave equations in two dimensions.

Dirichlet boundary conditions

Example 1

Find the general solution to the following BVP for the Helmholtz equation

$$
u_{x x}+u_{y y}=-\lambda u, \quad u(0, y)=u(\pi, y)=u(x, 0)=u(x, \pi)=0
$$

Neumann boundary conditions

Example 2

Find the general solution to the following BVP for the Helmholtz equation

$$
u_{x x}+u_{y y}=-\lambda u, \quad u_{x}(0, y)=u_{x}(\pi, y)=u_{y}(x, 0)=u_{y}(x, \pi)=0
$$

Mixed boundary conditions

Example 3

Find the general solution to the following BVP for the Helmholtz equation

$$
u_{x x}+u_{y y}=-\lambda u, \quad u(0, y)=u_{x}(\pi, y)=u_{y}(x, 0)=u_{y}(x, \pi)=0
$$

