Lecture 7.3: The heat and wave equations in higher dimensions

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Overview

Three fundamental PDEs in \mathbb{R}^{n}

- Laplace's equation: $\Delta u=0$
- Heat equation: $u_{t}=c^{2} \Delta u$
- Wave equation: $u_{t t}=c^{2} \Delta u$

Non-Dirichlet and inhomogeneous boundary conditions are more natural for the heat equation.

Solving the heat equation

To solve an B/IVP problem for the heat equation in two dimensions, $u_{t}=c^{2}\left(u_{x x}+u_{y y}\right)$:

1. Find the steady-state solution $u_{s s}(x, y)$ first, i.e., solve Laplace's equation $\Delta u=0$ with the same BCs .
2. Solve the related heat equation with homogeneous boundary conditions.

Add these two together to get the solution: $u(x, y, t)=u_{s s}(x, y)+u_{h}(x, y, t)$.

Homogeneous boundary conditions

Example 1a

Solve the following IVP/BVP for the 2D heat equation:

$$
\begin{array}{ll}
u_{t}=c^{2}\left(u_{x x}+u_{y y}\right), & u(0, y, t)=u(x, 0, t)=u(\pi, y, t)=u(x, \pi, t)=0 \\
u(x, y, 0)=2 \sin x \sin 2 y+3 \sin 4 x \sin 5 y
\end{array}
$$

Inhomogeneous boundary conditions

Example 1b

Solve the following IVP/BVP for the 2D heat equation:

$$
\begin{array}{ll}
u_{t}=c^{2}\left(u_{x x}+u_{y y}\right), \quad u(0, y, t)=u(x, 0, t)=u(\pi, y, t)=0, \quad u(x, \pi, t)=x(\pi-x) \\
& u(x, y, 0)=u_{s s}(x, y)+2 \sin x \sin 2 y+3 \sin 4 x \sin 5 y .
\end{array}
$$

The wave equation

The set-up

Consider a vibrating square membrane of length L, where the edges are held fixed. If $u(x, y, t)$ is the (vertical) displacement, then u satisfies the following B/IVP for the wave equation:

$$
\begin{array}{ll}
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right), \quad u(x, 0, t)=u(0, y, t)=u(x, L, t)=u(L, x, t)=0 \\
u(x, y, 0)=h_{1}(x, y), \quad u_{t}(x, y, 0)=h_{2}(x, y) .
\end{array}
$$

The functions $h_{1}(x, y)$ and $h_{2}(x, y)$ are initial displacement and velocity, respectively.

Finding the general solution

Example 2

Solve the following IVP/BVP for the wave equation:

$$
\begin{array}{ll}
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right), & u(x, 0, t)=u(0, y, t)=u(x, \pi, t)=u(\pi, x, t)=0 \\
u(x, y, 0)=x(\pi-x) y(\pi-y), \quad u_{t}(x, y, 0)=0 .
\end{array}
$$

Solving the resulting IVP

Example 2 (cont.)

The general solution to the following IVP/BVP for the wave equation:

$$
\begin{array}{ll}
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right), & u(x, 0, t)=u(0, y, t)=u(x, \pi, t)=u(\pi, x, t)=0 \\
u(x, y, 0)=x(\pi-x) y(\pi-y), \quad u_{t}(x, y, 0)=0 .
\end{array}
$$

is $u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} b_{m n} \sin m x \sin n y \cos \left(c \sqrt{m^{2}+n^{2}} t\right)$.

