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Overview

Definition

An integer n is:

even iff ∃k ∈ Z such that n = 2k

odd iff ∃k ∈ Z such that n = 2k + 1

prime iff n > 1 and ∀a, b ∈ Z+, if n = ab, then n = a or n = b.

composite iff n > 1 and n = ab for some integers 1 < a, b < n.

Examples

Let’s think about what would be needed to establish the following statements.

1. (Proving ∃). Show that there exists an even integer that can be written as a sum of two
prime numbers in two ways.

2. (Disproving ∃). Show that there does not exist a, b, c ∈ Z, and n > 2 such that
an + bn = cn.

3. (Proving ∀). Show that “22n + 1 is prime, ∀n”.

4. (Disproving ∀). Show that the statement “22n + 1 is prime, ∀n” is actually false.

In this lecture, we’ll focus on prime factorization and proving universal statements.
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Proving a universal statement

Examples of universal statements have the form

∀x ∈ U, Q(x),

or
∀x ∈ U if P(x), then Q(x).

There are several ways to prove such a statement:

(i) Exhaustion: if |U| <∞, verify that it holds for all x ∈ U.

(ii) Direct proof: let x ∈ U be arbitrary, and show that P(x) implies Q(x).

(iii) Indirect proof (contrapositive): assume ¬Q(x) and show ¬P(x).

(iv) Indirect proof (contradiction): assume ¬Q(x) for some x ∈ U, and find a contradiction.

Examples

1. ∀n = 0, 1, . . . , 40: n2 − n + 41 is prime.

2. ∀n ∈ Z: n is odd implies that n2 is odd.

3. ∀r , s ∈ R: if r ∈ Q and s 6∈ Q, then r + s 6∈ Q.

4. ∀ primes p, there is a larger prime q > p.

To disprove a universal statement, it suffices to find one counterexample.
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Disproving universal statements

Definition

The nth Fermat number is Fn := 22n + 1.

The first few are F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537, F5 = 4294967297.

Conjecture (Pierre Fermat, 1650)

Fn is prime for all n.

In 1732, Leonhard Euler disproved Fermat’s
conjecture by demonstrating

F5 = 225
+1 = 232+1 = 4294967297 = 641·6700417 .

So far, every Fn is known to be composite for 5 ≤ n ≤ 32. In 2014, a computer showed that
193× 23329782 + 1 is a prime factor of

F3329780 = 223329780
+ 1 > 1010106

.

It is not known if any other Fermat primes exist!
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Some conjectures

Conjecture

The number n2 − n + 41 is prime, for all integers n ≥ 0.

Counterexample

This is true for n = 0, 1, . . . , 40, but 412 − 41 + 41 = 412 is not prime.

Conjecture (Leonhard Euler, 18th century)

There are no integer solutions to a4 + b4 + c4 = d4.

Counterexample (1987)

958004 + 2175194 + 4145604 = 4224814.

Goldbach Conjecture (18th century)

Every even integer greater than 2 is the sum of two prime numbers.

Current state of knowledge

True for (at least) n = 4, 6, . . . , 4× 1018.

M. Macauley (Clemson) Lecture 3.3: Proving universal statements Discrete Mathematical Structures 6 / 6

mailto:macaule@clemson.edu

