Lecture 3.3: Proving universal statements

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Overview

Definition

An integer n is:

- even iff $\exists k \in \mathbb{Z}$ such that $n=2 k$
- odd iff $\exists k \in \mathbb{Z}$ such that $n=2 k+1$
- prime iff $n>1$ and $\forall a, b \in \mathbb{Z}^{+}$, if $n=a b$, then $n=a$ or $n=b$.
- composite iff $n>1$ and $n=a b$ for some integers $1<a, b<n$.

Examples

Let's think about what would be needed to establish the following statements.

1. (Proving \exists). Show that there exists an even integer that can be written as a sum of two prime numbers in two ways.
2. (Disproving \exists). Show that there does not exist $a, b, c \in \mathbb{Z}$, and $n>2$ such that $a^{n}+b^{n}=c^{n}$.
3. (Proving \forall). Show that " $2^{2^{n}}+1$ is prime, $\forall n$ ".
4. (Disproving \forall). Show that the statement " $2^{2^{n}}+1$ is prime, $\forall n$ " is actually false.

In this lecture, we'll focus on prime factorization and proving universal statements.

Proving a universal statement

Examples of universal statements have the form

$$
\forall x \in U, Q(x)
$$

or

$$
\forall x \in U \text { if } P(x) \text {, then } Q(x)
$$

There are several ways to prove such a statement:
(i) Exhaustion: if $|U|<\infty$, verify that it holds for all $x \in U$.
(ii) Direct proof: let $x \in U$ be arbitrary, and show that $P(x)$ implies $Q(x)$.
(iii) Indirect proof (contrapositive): assume $\neg Q(x)$ and show $\neg P(x)$.
(iv) Indirect proof (contradiction): assume $\neg Q(x)$ for some $x \in U$, and find a contradiction.

Examples

1. $\forall n=0,1, \ldots, 40: n^{2}-n+41$ is prime.
2. $\forall n \in \mathbb{Z}: n$ is odd implies that n^{2} is odd.
3. $\forall r, s \in \mathbb{R}$: if $r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$, then $r+s \notin \mathbb{Q}$.
4. \forall primes p, there is a larger prime $q>p$.

To disprove a universal statement, it suffices to find one counterexample.

Proving universal statements

Examples

1. $\forall n=0,1, \ldots, 40: n^{2}-n+41$ is prime.
2. $\forall n \in \mathbb{Z}: n$ is odd implies that n^{2} is odd.
3. $\forall r, s \in \mathbb{R}$: if $r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$, then $r+s \notin \mathbb{Q}$.
4. \forall primes p, there is a larger prime $q>p$.

Disproving universal statements

Definition

The $n^{\text {th }}$ Fermat number is $F_{n}:=2^{2^{n}}+1$.

The first few are $F_{0}=3, F_{1}=5, F_{2}=17, F_{3}=257, F_{4}=65537, F_{5}=4294967297$.

Conjecture (Pierre Fermat, 1650)

F_{n} is prime for all n.

In 1732, Leonhard Euler disproved Fermat's conjecture by demonstrating
$F_{5}=2^{2^{5}}+1=2^{32}+1=4294967297=641 \cdot 6700417$.

So far, every F_{n} is known to be composite for $5 \leq n \leq 32$. In 2014, a computer showed that $193 \times 2^{3329782}+1$ is a prime factor of

$$
F_{3329780}=2^{2^{3329780}}+1>10^{10^{10^{6}}}
$$

It is not known if any other Fermat primes exist!

Some conjectures

Conjecture

The number $n^{2}-n+41$ is prime, for all integers $n \geq 0$.
Counterexample
This is true for $n=0,1, \ldots, 40$, but $41^{2}-41+41=41^{2}$ is not prime.

Conjecture (Leonhard Euler, $18^{\text {th }}$ century)
There are no integer solutions to $a^{4}+b^{4}+c^{4}=d^{4}$.
Counterexample (1987)
$95800^{4}+217519^{4}+414560^{4}=422481^{4}$.

Goldbach Conjecture ($18^{\text {th }}$ century)
Every even integer greater than 2 is the sum of two prime numbers.
Current state of knowledge
True for (at least) $n=4,6, \ldots, 4 \times 10^{18}$.

