Lecture 3.3: Proving universal statements

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Overview

Definition

An integer n is:

- even iff $\exists k \in \mathbb{Z}$ such that n = 2k
- odd iff $\exists k \in \mathbb{Z}$ such that n = 2k + 1
- **prime** iff n > 1 and $\forall a, b \in \mathbb{Z}^+$, if n = ab, then n = a or n = b.
- **composite** iff n > 1 and n = ab for some integers 1 < a, b < n.

Examples

Let's think about what would be needed to establish the following statements.

- 1. (Proving \exists). Show that there exists an even integer that can be written as a sum of two prime numbers in two ways.
- 2. (Disproving \exists). Show that there does not exist $a, b, c \in \mathbb{Z}$, and n > 2 such that $a^n + b^n = c^n$.
- 3. (Proving \forall). Show that " $2^{2^n} + 1$ is prime, $\forall n$ ".
- 4. (Disproving \forall). Show that the statement " $2^{2^n} + 1$ is prime, $\forall n$ " is actually false.

In this lecture, we'll focus on prime factorization and proving universal statements.

Proving a universal statement

Examples of universal statements have the form

 $\forall x \in U, Q(x),$

or

$$\forall x \in U \text{ if } P(x), \text{ then } Q(x).$$

There are several ways to prove such a statement:

- (i) Exhaustion: if $|U| < \infty$, verify that it holds for all $x \in U$.
- (ii) Direct proof: let $x \in U$ be arbitrary, and show that P(x) implies Q(x).
- (iii) Indirect proof (contrapositive): assume $\neg Q(x)$ and show $\neg P(x)$.

(iv) Indirect proof (contradiction): assume $\neg Q(x)$ for some $x \in U$, and find a contradiction.

Examples

- 1. $\forall n = 0, 1, \dots, 40$: $n^2 n + 41$ is prime.
- 2. $\forall n \in \mathbb{Z}$: *n* is odd implies that n^2 is odd.
- 3. $\forall r, s \in \mathbb{R}$: if $r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$, then $r + s \notin \mathbb{Q}$.
- 4. \forall primes p, there is a larger prime q > p.

To disprove a universal statement, it suffices to find one counterexample.

Proving universal statements

Examples

- 1. $\forall n = 0, 1, \dots, 40$: $n^2 n + 41$ is prime.
- 2. $\forall n \in \mathbb{Z}$: *n* is odd implies that n^2 is odd.
- 3. $\forall r, s \in \mathbb{R}$: if $r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$, then $r + s \notin \mathbb{Q}$.
- 4. \forall primes p, there is a larger prime q > p.

Disproving universal statements

Definition

The *n*th Fermat number is $F_n := 2^{2^n} + 1$.

The first few are $F_0 = 3$, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$, $F_5 = 4294967297$.

Conjecture (Pierre Fermat, 1650)

 F_n is prime for all n.

In 1732, Leonhard Euler disproved Fermat's conjecture by demonstrating

$$F_5 = 2^{2^5} + 1 = 2^{32} + 1 = 4294967297 = 641.6700417$$
.

So far, every F_n is known to be composite for $5 \le n \le 32$. In 2014, a computer showed that $193 \times 2^{3329782} + 1$ is a prime factor of

$$F_{3329780} = 2^{2^{3329780}} + 1 > 10^{10^{10^6}}.$$

It is not known if any other Fermat primes exist!

M. Macauley (Clemson)

Some conjectures

Conjecture

The number $n^2 - n + 41$ is prime, for all integers $n \ge 0$.

Counterexample

This is true for n = 0, 1, ..., 40, but $41^2 - 41 + 41 = 41^2$ is not prime.

Conjecture (Leonhard Euler, 18th century)

There are no integer solutions to $a^4 + b^4 + c^4 = d^4$.

Counterexample (1987)

 $95800^4 + 217519^4 + 414560^4 = 422481^4$.

Goldbach Conjecture (18th century)

Every even integer greater than 2 is the sum of two prime numbers.

Current state of knowledge

True for (at least) $n = 4, 6, ..., 4 \times 10^{18}$.