TOPICS: VECTOR SPACES, LINEAR INDEPENDENCE, AND BASES

- 1. For each of the following sets, determine if it is a *vector space* over \mathbb{R} . If it is, give an explicit *basis* and compute its *dimension*. If it isn't, explain why not by giving an example of how one of the vector space properties fails.
 - (a) The set of points in \mathbb{R}^3 with x = 0.
 - (b) The set of points in \mathbb{R}^2 with x = y.
 - (c) The set of points in \mathbb{R}^3 with x = y.
 - (d) The set of points in \mathbb{R}^3 with $z \ge 0$.
 - (e) The plane in \mathbb{R}^3 defined by the equation z = 2x 3y.
 - (f) The set of unit vectors in \mathbb{R}^2 .
 - (g) The set of polynomials of degree n.
 - (h) The set $\mathbb{R}_n[x]$ of polynomials of degree at most n.
 - (i) The set of polynomials of degree at most n, with only even-powers of x.
 - (j) The set $\operatorname{Per}_{2\pi}(\mathbb{R})$ of piecewise continuous functions, i.e., f such that $f(x) = f(x+2\pi)$.
 - (k) $\mathbb{C} := \{a + bi \mid a, b \in \mathbb{R}\}.$
- 2. Let v_1, v_2, w be three *linearly independent* vectors in \mathbb{R}^3 . That is, they do not all lie on the same plane. For each of the following (infinite) set of vectors, carefully sketch it in \mathbb{R}^3 , and determine whether or not it is a vector space (i.e., a *subspace* of \mathbb{R}^3). Explain your reasoning.
 - (a) $\{Cv_1 \mid C \in \mathbb{R}\}$ (c) $\{C_1v_1 + C_2v_2 \mid C_1, C_2 \in \mathbb{R}\}$

(b)
$$\{Cv_1 + w \mid C \in \mathbb{R}\}$$
 (d) $\{C_1v_1 + C_2v_2 + w \mid C_1, C_2 \in \mathbb{R}\}$

- 3. Find the general solution to each of the following ODEs. Then, decide whether or not the set of solutions form a vector space. Explain your reasoning. Compare your answers to the previous problem. Recall that the general solution has the form $y(t) = y_h(t) + y_p(t)$.
 - (a) y' 2y = 0 (c) y'' + 4y = 0

(b)
$$y' - 2y = 1$$
 (d) $y'' + 4y = e^{3}$

- 4. For each of the following pairs of vectors $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$ in (a)–(e), carry out the following steps:
 - (i) The lines through v_1 and v_2 generate a grid (of parallelograms) on the *xy*-plane. Sketch v_1 , v_2 , and this grid.
 - (ii) Find the area of one of the parallelgrams by computing the determinant of the matrix $\begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}$. Is this matrix invertible?
 - (iii) Determine whether $\{v_1, v_2\}$ is a basis of \mathbb{R}^2 .

- (a) $v_1 = (1,0), v_2 = (0,1)$ (b) $v_1 = (2,0), v_2 = (0,2)$ (c) $v_1 = (1,1), v_2 = (1,2)$ (d) $v_1 = (1,1), v_2 = (1,2)$ (e) $v_1 = (1,2), v_2 = (1,1)$
- (c) $v_1 = (\frac{1}{2}, \frac{1}{2}), v_2 = (\frac{1}{2}, -\frac{1}{2})$ (f) $v_1 = (2, -1), v_2 = (-4, 2)$

Summarize your conclusions in a sentence or two.

- 5. For each of the following triples of vectors $v_1 = (x_1, y_1, z_1)$, $v_2 = (x_2, y_2, z_2)$, and $v_3 = (x_3, y_3, z_3)$, carry out the following steps:
 - (i) Sketch v_1 , v_2 , and v_3 in \mathbb{R}^3 .
 - (ii) Use a computer to calculate the determinant of $\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$. Is it invertible?
 - (iii) The lines through v_1 , v_2 , and v_3 generate a tessellation (of parallelepipeds) in \mathbb{R}^3 . What do you think the volume of each parallelepiped is?
 - (iv) Describe in words (e.g., line, plane, all of \mathbb{R}^3) the subspace Span $\{v_1, v_2, v_3\}$. Is $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 ?
 - (a) $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1)$
 - (b) $v_1 = (2, 0, 0), v_2 = (0, 2, 0), v_3 = (0, 0, 2)$
 - (c) $v_1 = (1, 0, 0), v_2 = (0, 1, 1), v_3 = (3, 1, 1)$
 - (d) $v_1 = (1, 0, 0), v_2 = (0, 2, -1), v_3 = (1, 1, 1)$

Summarize your conclusions in a sentence or two.

- 6. For each of the following, a vector space V is given, along with a finite set $S \subset V$. Denote the subspace of V spanned by S as Span(S). Find an explicit basis for Span(S) and compute its dimension.
 - (a) $V = \mathbb{R}^3$, $S = \{(1, 0, 0), (0, 1, 1), (1, 1, 1), (3, 1, 1)\}.$
 - (b) $V = \mathbb{R}^2$, $S = \{(1,0), (0,1), (\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, -\frac{1}{2})\}.$
 - (c) $V = \mathcal{C}^{\infty}(\mathbb{R}), S = \{e^{3x}, e^{-3x}, \cosh 3x, \sinh 3x\}.$