Topics: Linear maps, inner products, and orthogonality

1. Let $T: V \rightarrow W$ be a linear map between vector spaces. Prove that $\operatorname{ker}(T):=\{v \in V \mid$ $T(v)=0\}$ is a subspace of V.
2. Let $V=\mathcal{C}^{1}(\mathbb{R})$, the vector space of differentiable real-valued functions. Consider the linear operator $T=\frac{d}{d t}+3$.
(a) The kernel of T can be characterized precisely by the set of all funtions that solve a particular differential equation. Write down this equation.
(b) Find the general solution for the differential equation you found in Part (a), and hence an explicit formula for $\operatorname{ker}(T)$.
(c) Write down an explicit basis for the solution space, $\operatorname{ker}(T)$. What is the dimension of this vector space?
3. Let $\mathbf{v}=(3,4) \in \mathbb{R}^{2}$.
(a) Compute $\|\mathbf{v}\|:=\sqrt{\mathbf{v} \cdot \mathbf{v}}$.
(b) Recall that $\left\{\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)\right\}$ is an orthonormal basis for \mathbb{R}^{2}. Decompose \mathbf{v} into this basis, i.e., write $\mathbf{v}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}$ for some $a_{1}, a_{2} \in \mathbb{R}$.
(c) Sketch $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{v} in \mathbb{R}^{2}. Graphically show what a_{1} and a_{2} represent in terms of the projection of \mathbf{v} onto the unit vectors \mathbf{e}_{1} and \mathbf{e}_{2}.
(d) The set $\left\{\mathbf{v}_{1}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \mathbf{v}_{2}=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)\right\}$ is also an orthonormal basis. Decompose \mathbf{v} into this basis, i.e., write $\mathbf{v}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}$ for some $b_{1}, b_{2} \in \mathbb{R}$.
(e) On a new set of axes, sketch $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v} in \mathbb{R}^{2}. Graphically show what b_{1} and b_{2} represent in terms of the projection of \mathbf{v} onto the unit vectors \mathbf{v}_{1} and \mathbf{v}_{2}.
4. For this problem, consider the vector space $V=\mathbb{R}^{3}$ and use the vector dot product as the inner product.
(a) Show that the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where

$$
\mathbf{v}_{1}=(1,2,-2), \quad \mathbf{v}_{2}=(0,1,1), \quad \mathbf{v}_{3}=(-4,1,-1)
$$

is an orthogonal set, but not orthonormal.
(b) Normalize $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} to get an orthonormal basis of \mathbb{R}^{3}. That is, compute the following:

$$
\mathcal{B}=\left\{\mathbf{n}_{1}, \mathbf{n}_{2}, \mathbf{n}_{3}\right\} \quad \text { where } \quad \mathbf{n}_{i}=\frac{\mathbf{v}_{i}}{\left\|\mathbf{v}_{i}\right\|}
$$

(c) Use the dot product to express the vector $\mathbf{w}=(1,2,3)$ in terms of $\mathbf{n}_{1}, \mathbf{n}_{2}$, and \mathbf{n}_{3}. That is, find C_{1}, C_{2}, and C_{3} such that

$$
\mathbf{w}=C_{1} \mathbf{n}_{1}+C_{2} \mathbf{n}_{2}+C_{3} \mathbf{n}_{3} .
$$

5. Let $\mathbb{R}_{3}[x]=\left\{a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \mid a_{i} \in \mathbb{R}\right\}$, the vector space of polynomials of degree at most 3 . Define the following inner product on $\mathbb{R}_{3}[x]$:

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

(a) Verify that this is indeed an inner product on $\mathbb{R}_{3}[x]$.
(b) Consider the two sets

$$
\mathcal{B}_{1}=\left\{1, x, 3 x^{2}-1,5 x^{3}-3 x\right\}, \quad \mathcal{B}_{2}=\left\{1, x, x^{2}, x^{3}\right\}
$$

that are both bases for $\mathbb{R}_{3}[x]$. Show that \mathcal{B}_{1} is an orthogonal set, but \mathcal{B}_{2} is not. (The set \mathcal{B}_{1} are the first four Legendre polynomials, $P_{n}(x)$ for $n=0, \ldots, 3$. When we study Sturm-Liouville theory, we will see why the Legendre polynomials are always orthogonal!)
(c) For each $f \in \mathcal{B}_{1}$, compute the norm of f, which is defined as $\|f\|=\langle f, f\rangle^{1 / 2}$. Find an orthonormal basis for $\mathbb{R}_{3}[x]$ by normalizing the elements in \mathcal{B}_{1}.
(d) Consider the polynomial $f(x)=3 x^{3}-2 x^{2}+4$. Use orthogonality to write $f(x)$ using the elements in \mathcal{B}_{1}. That is, find C_{0}, C_{1}, C_{2}, and C_{3} such that

$$
3 x^{3}-2 x^{2}+4=C_{0}+C_{1} x+C_{2}\left(3 x^{2}-1\right)+C_{3}\left(5 x^{3}-3 x\right)
$$

