Topics: Cauchy-Euler equations and power series solutions to ODEs

1. For each of the Cauchy-Euler equations below, look for a solution of the form $y(x)=x^{r}$, and plug this back in and find r. Find a basis of the solution space consisting of two real-valued functions, and use this to write the general solution.
(a) $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=0$
(b) $x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0$
(c) $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$
2. Write each of the following as a single series of the form $\sum f(n) x^{n}$. That is, $f(n)$ is the coefficient of x^{n}. You may need to additionally "pull out" the first term(s) from one of the sums.
(a) $\sum_{n=0}^{5} x^{n-1}$
(d) $\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=0}^{\infty} b_{n} x^{n-1}+\sum_{n=0}^{\infty} c_{n} x^{n+1}$
(b) $\sum_{n=0}^{5} x^{n+1}$
(e) $5 \sum_{n=0}^{\infty} n(n-1) x^{n-2}+\sum_{n=0}^{\infty} n x^{n-1}-\sum_{n=0}^{\infty} x^{n}$.
(c) $\sum_{n=0}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n}$
3. Consider the ODE $y^{\prime \prime}-2 x y^{\prime}+10 y=0$. Note that unlike the equation in the first problem, there will not longer be a simple solution of the form x^{r}. However, we know that the solution space is 2-dimensional, and most "nice" functions can be written as a power series. Therefore, we'll look for a solution of the form $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
(a) Plug $y(x)$ back into the ODE and find a recurrence relation for a_{n+2} in terms of a_{n} and a_{n+1}.
(b) Explicitly write out the coefficients a_{n} for $n \leq 9$, in terms of a_{0} and a_{1}. Write down formulas for $a_{2 n}$ and $a_{2 n+1}$ in terms of a_{0} and a_{1}.
(c) Since the solution space to this ODE is 2-dimensional, the general solution you found in Part (a) can be written as $y(x)=C_{0} y_{0}(x)+C_{1} y_{1}(x)$. Find such a basis, $\left\{y_{0}(x), y_{1}(x)\right\}$.
(d) Find a non-zero polynomial solution. [Hint: Make a good choice for a_{0} and a_{1}.]
(e) Are there any other polynomial solutions, excluding scalar multiples of the one you found in (d)? Why or why not?
(f) Consider the initial value problem

$$
y^{\prime \prime}-2 x y^{\prime}+10 y=0, \quad y(0)=x_{0}, \quad y^{\prime}(0)=v_{0} .
$$

What are x_{0} and v_{0} in terms of the coefficients a_{n} ?
4. The differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\nu(\nu+1) y=0$, where ν is a constant, is known as Legendre's equation. It is used for modeling sperically symmetric potentials in the theory of Newtonian gravitation and in electricity and magnetism.
(a) Assume that the general solution has the form $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, and find the recursion formula for a_{n+2} in terms of a_{n} and a_{n+1}.
(b) Use the recursion formula to determine a_{n} in terms of a_{0} and a_{1}, for $2 \leq n \leq 9$.
(c) For each $\nu \in \mathbb{N}$, there will be a single (up to scalar multiples) nonzero polynomial solution $P_{\nu}(x)$, called the Legendre polynomial of degree ν. Find the Legendre polynomial of degree $\nu=3$.
(d) Find a basis for the solution space to $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+12 y=0$.
5. The differential equation $y^{\prime \prime}-x y=0$ is called Airy's equation, and is used in physics to model the refraction of light.
(a) Assume a power series solution, and find the recurrence relation of the coefficients. [Hint: When shifting the indices, one way is to let $m=n-3$, then factor out x^{n+1} and find a_{n+3} in terms of a_{n}. Alternatively, you can find a_{n+2} in terms of a_{n-1}.]
(b) Show that $a_{2}=0$. [Hint: the two series for $y^{\prime \prime}$ and $x y$ don't "start" at the same power of x, but for any solution, each term must be zero. (Why?)]
(c) Find the particular solution when $y(0)=1, y^{\prime}(0)=0$, as well as the particular solution when $y(0)=0, y^{\prime}(0)=1$.
6. Consider the following initial value problem:

$$
y^{\prime \prime \prime}-y=0, \quad y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=0
$$

(a) Assume there is a solution of the form $y(x)=e^{r x}$, and plug this back in and solve for r. Use this to write the general solution. [Hint: The equation $r^{3}=1$ has 3 distinct solutions over \mathbb{C}, called the 3rd roots of unity: $r_{1}=e^{0 \pi i / 3}=1, r_{2}=e^{2 \pi i / 3}$, and $r_{2}=e^{4 \pi i / 3}$.]
(b) From here, you could solve the initial value problem by plugging in the initial conditions, but you'll get a system of three equations with three unknowns, and involving complex numbers. Here's another way: look for a power series solution, $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Plug this back into the ODE and find the recurrence relation for the coefficients.
(c) Compute a_{n} for $n \leq 10$, and once you see the pattern, write down the general solution to the ODE as a power series. [Hint: It should look familiar!]
(d) Write down a basis for the solution space.
(e) Plug in the initial conditions and find the particular solution to the IVP.
(f) Solve a similar initial value problem:

$$
y^{\prime \prime \prime}-y=0, \quad y(0)=1, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=1
$$

