Topics: Projection and least squares.

Do: Answer the following questions, and feel free to use a computer to solve *any* systems of equations you encounter throughout this problem.

- 1. Consider the four data points $(t_i, b_i) = (0, 0)$, (1, 8), (3, 8), and (4, 20). Let t = (0, 1, 3, 4) be the vector of inputs and b = (0, 8, 8, 20) the vector of outputs.
 - (a) If there were a straight line b = C + Dt through these four points, then a certain equation Ax = b would have a solution, where x = (C, D). Write this equation in matrix form (that is, find A).
 - (b) Instead, we wish to find the "best fit" line, which means we need to solve $A\hat{x} = p$, where p is the projection of b onto the column space of A. Write down the normal equations $A^T A \hat{x} = A^T b$, where $\hat{x} = (\hat{C}, \hat{D})$, and solve for \hat{x} .
 - (c) Check that $\boldsymbol{e} = \boldsymbol{b} \boldsymbol{p}$ is orthogonal to both columns of \boldsymbol{A} . Compute $||\boldsymbol{e}||$, which is the shortest distance from \boldsymbol{b} to the column space of \boldsymbol{A} . Sketch a diagram of $\boldsymbol{e}, \boldsymbol{b}, \boldsymbol{p}$, and the orthogonal subspaces $C(\boldsymbol{A})$ and $N(\boldsymbol{A}^T)$ to illustrate this.
 - (d) Plot the four data points in \mathbb{R}^2 (on the *tb*-plane) and sketch the best fit line through them that you just found. Clearly mark what the vectors $\boldsymbol{b} = (b_1, b_2, b_3, b_4)$, $\boldsymbol{e} = (e_1, e_2, e_3, e_4)$, and $\boldsymbol{p} = (p_1, p_2, p_3, p_4)$ represent.
 - (e) Write down $E := ||\mathbf{A}\mathbf{x} \mathbf{b}||^2$ as a sum of four squares—the last one is $(C + 4D 20)^2$, and compute $\partial E/\partial C$ and $\partial E/\partial D$. Set these derivatives equal to zero, and obtain scalars of the normal equations $\mathbf{A}^T \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$.
 - (f) The method above found the best fit degree-1 polynomial (line). Now, find the best fit degree-0 polynomial (horizontal line) b = C. Note that this will be a 4×1 system instead of a 4×2 system. Compute the vectors \boldsymbol{p} and \boldsymbol{e} , and the (squared) error $||\boldsymbol{e}||^2$.
 - (g) Find the best fit parabola (degree-2 polynomial) $b = C + Dt + Et^2$. On a new set of axes, plot the four data points and this parabola. Compute the vectors \boldsymbol{p} and \boldsymbol{e} , and the (squared) error $||\boldsymbol{e}||^2$.
 - (h) Find the best fit cubic (degree-3 polynomial) $b = C + Dt + Et^2 + Ft^3$. On a new set of axes, plot the four data points and this cubic. Compute the vectors \boldsymbol{p} and \boldsymbol{e} , and the (squared) error $||\boldsymbol{e}||^2$.