Topics: Orthogonality, Gram-Schmidt, and QR factorization

Do: Answer the following questions.

- 1. In this problem you will prove that orthonormal vectors are linearly independent two different ways.
 - (a) Vector proof: First, suppose that $c_1 q_1 + c_2 q_2 + \cdots + c_k q_k = 0$. Show that each $c_i = 0$. [*Hint*: Start by multipling both sides of the equation by q_i^T .]
 - (b) Matrix proof: Let Q be the matrix whose columns are the q_i 's. Show that if Qx = 0, then x = 0. [*Hint*: Since Q need not be square, you cannot assume Q^{-1} exists, but Q^T of course will.]
- 2. Let $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} be the (independent) column vectors of the matrix

$$\boldsymbol{M} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix},$$

whose column space is the orthogonal complement to the vector (1, 1, 1, 1). Use the Gram-Schmidt process to produce an orthonormal basis q_1 , q_2 , and q_3 . Then write M = QR, where Q is orthogonal and R is upper-triangular.

- 3. Recall that if $||\boldsymbol{u}|| = 1$, then the rank-1 matrix $\boldsymbol{u}\boldsymbol{u}^T$ is the projection matrix onto \boldsymbol{u} . In this case, $\boldsymbol{Q} = \boldsymbol{I} 2\boldsymbol{u}\boldsymbol{u}^T$ is a *reflection matrix*.
 - (a) Reflecting twice across the same axis is the identity. Verify that indeed, $Q^2 = I$.
 - (b) Compute Qu, and simplify this expression as much as possible.
 - (c) Suppose v is orthogonal to u. Compute Qv, and simplify as much as possible.
 - (d) Describe in plain English which subspace Q is reflecting across. Your answer should involve u. Include a sketch.
 - (e) Compute the reflection matrix $\boldsymbol{Q}_1 = \boldsymbol{I} 2\boldsymbol{u}_1\boldsymbol{u}_1^T$ where $\boldsymbol{u}_1 = (0, 1)$. Compute $\boldsymbol{Q}_1\boldsymbol{x}_1$, where $\boldsymbol{x}_1 = (a, b)$, and sketch the vectors $\boldsymbol{u}_1, \boldsymbol{x}_1$, and $\boldsymbol{Q}_1\boldsymbol{x}_1$ in the plane.
 - (f) Compute the reflection matrix $\boldsymbol{Q}_2 = \boldsymbol{I} 2\boldsymbol{u}_2\boldsymbol{u}_2^T$ where $\boldsymbol{u}_2 = (0, \sqrt{2}/2, \sqrt{2}/2)$. Compute $\boldsymbol{Q}_2\boldsymbol{x}_2$, where $\boldsymbol{x}_2 = (1, 1, 1)$, and sketch the vectors $\boldsymbol{u}_2, \boldsymbol{x}_2$, and $\boldsymbol{Q}_2\boldsymbol{x}_2$ in \mathbb{R}^3 .