Topic: The matrix of a linear map

Do: Answer the following questions. Throughout, assume that X is a finite-dimensional vector space over a field K.

- 1. Let \mathcal{P}_n be the vector space of all polynomials over \mathbb{R} of degree less than n.
 - (a) Show that the map $T: \mathcal{P}_3 \to \mathcal{P}_4$ given by

$$T(p(x)) = 6 \int_1^x p(t) dt$$

is linear. Determine whether it is 1–1 or onto.

- (b) Let $\mathcal{B}_3 = \{1, x, x^2\}$ be a basis for \mathcal{P}_3 and let $\mathcal{B}_4 = \{1, x, x^2, x^3\}$ be a basis for \mathcal{P}_4 . Find the matrix representation of T with respect to these bases.
- 2. Let $T: X \to U$, with dim X = n and dim U = m. Show how to construct bases \mathcal{B}_X for X and \mathcal{B}_U for U such that the matrix of T in block form is

$$M = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

where I_r is the $r \times r$ identity matrix, and the other blocks are either empty or contain all zeros. Prove/justify all of your claims.

3. Find an explicit counterexample to the following statement: If the matrix of a linear map $T: X \to X$ is A, with respect to an input basis x_1, \ldots, x_n and output basis u_1, \ldots, u_n , then the matrix of T^2 is A^2 .