Topic: Jordan canonical form.

Do: Answer the following questions. Assume that all matrices are over the field $K = \mathbb{C}$.

1. Consider the following Jordan blocks with eigenvalue λ :

$$\boldsymbol{J}_2 = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \qquad \boldsymbol{J}_3 = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}, \qquad \boldsymbol{J}_4 = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}.$$

For each J_i , compute J_i^2 and J_i^3 . Guess the form of J_i^k . Set k = 0 to find J_i^0 and k = -1 to find J_i^{-1} .

- 2. Let **A** be a 7×7 matrix over \mathbb{C} with minimal polynomial $m(t) = (t-1)^3(t-2)^2$.
 - (a) List all possible Jordan canonical forms of A up to similarity.
 - (b) For each matrix from Part (a), find the rank of $(\mathbf{A} \mathbf{I})^k$ and $(\mathbf{A} 2\mathbf{I})^k$, for $k \in \mathbb{N}$.
- 3. Let A be an $n \times n$ matrix over \mathbb{C} . The matrix A is *nilpotent* if $A^k = 0$ for some $k \in \mathbb{N}$, and A is *idempotent* if $A^2 = A$.
 - (a) Prove that if $\mathbf{A}^k = \mathbf{A}$ for some integer k > 1, then \mathbf{A} is diagonalizable.
 - (b) Prove that idempotent matrices are similar if and only if they have the same trace.
 - (c) Prove that if \mathbf{A} is nilpotent, then $A^n = 0$.
 - (d) Prove that if A is nilpotent, then there is some $r \in \mathbb{N}$ and positive integers $k_1 \geq \cdots \geq k_r$ with $k_1 + \cdots + k_r = n$ that determine A up to similarity.
 - (e) Suppose A and B are 6×6 nilpotent matrices with the same minimal polynomial and dim $N_A = \dim N_B$. Prove that A and B are similar. Show by example that this can fail for 7×7 matrices.