Topic: Adjoints.

Do: Answer the following questions.

- 1. Let $A: X \to U$ be a linear map between finite-dimensional inner product spaces. Recall that its *adjoint* is a linear map $A^*: U \to X$ such that $(Ax, u) = (x, A^*u)$ for all $x \in X$ and $u \in U$.
 - (a) Give a direct proof that $R_A^{\perp} = N_{A^*}$, by showing that these are equal as sets.
 - (b) Establish the following equalities as simple corollaries:
 - (i) $R_{A^*} = N_A^{\perp}$ (ii) $N_A = R_{A^*}^{\perp}$ (iii) $R_A = N_{A^*}^{\perp}$.
 - (c) Show that A maps R_{A^*} bijectively onto R_A .
- 2. Let x_1, x_2 be a basis of $X = \mathbb{R}^2$, and $\ell_1, \ell_2 \in X'$ the dual basis. Carry out the steps below for the linear map $A: X \to X$ defined by $A(x_1) = x_1$ and $A(x_2) = x_1 + x_2$ with respect to the standard dot product, and then with respect to each of the following inner products:

$$\langle x, y \rangle := \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \text{and} \quad \langle x, y \rangle := \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- (a) Find $v_i \in X$ for which $\ell_i = \langle -, v_i \rangle$, for i = 1, 2.
- (b) Find $y_i \in X$ for which $A'(\ell_i) = \ell_i \circ A = \langle -, y_i \rangle$, for i = 1, 2.
- (c) Find the adjoint $A^* \colon X \to X$ with respect to this inner product.