Topic: Self-adjoint matrices, quadratic forms, left & right inverses.

Read: Spectral theorems and singular value decomposition (SVD), by Shuhong Gao.

Do: Answer the following question.

- 1. Consider the quadratic form $q(x) = 2x_1^2 + 6x_1x_2 + 2x_2^2$.
 - (a) Write this as $q(x) = x^T A x$, for some A.
 - (b) Write $A = PDP^{T}$, where D is a diagonal matrix and P is orthogonal with determinant 1, i.e., a rotation matrix.
 - (c) Change variables by letting $z = P^T x$. Sketch the level curve q(x) = 1 in both the $z_1 z_2$ -plane and in the $x_1 x_2$ -plane.
- 2. Let $A: X \to U$ be a linear map between finite-dimensional vector spaces, with dim X = nand dim U = m. The map A has a *left inverse* if there is a linear map $L: U \to X$ such that $LA = I_X$, the identity on X. It has a *right inverse* if there is a linear map $R: U \to X$ such that $AR = I_U$ is the identity on U.
 - (a) Show that if A has a left inverse, then Ax = u has at most one solution. Give a condition on u that completely characterizes when there is a solution.
 - (b) Show that if A has a right inverse, then Ax = u has at least one solution. If $Ax_p = u$ for some particular $x_p \in X$, then describe all solutions for x in this case. What condition ensures that there will be *only* one solution?
 - (c) What are the possibilities for the rank of A if it has a left inverse? What if it has a right inverse?