Topic: Singular value decomposition, pseudo-inverses.

Read: Spectral theorems and singular value decomposition (SVD), by Shuhong Gao.

Do: Answer the following question.

1. Consider the following matrices:

$$A = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}, \qquad A^{T}A = \begin{bmatrix} 25 & 7 \\ 7 & 25 \end{bmatrix}, \qquad AA^{T} = \begin{bmatrix} 32 & 0 \\ 0 & 18 \end{bmatrix}.$$

- (a) Find the eigenvalues σ_1^2 , σ_2^2 and unit eigenvectors v_1 , v_2 of $A^T A$.
- (b) For the $\sigma_i \neq 0$, compute $u_i = Av_i/\sigma_i$ and verify that indeed $||u_i|| = 1$. Find the other u_i by computing the other unit eigenvector of AA^T .
- (c) Construct the singular value decomposition (SVD), $A = U\Sigma V^T$.
- (d) Write down orthonormal bases for each the "four fundamental subspaces": the row space R_A , the nullspace N_A , the column space R_{A^T} , and the left nullspace N_{A^T} .
- (e) Describe all matrices that have the same four fundamental subspaces.
- (f) Find a left, right, and pseudoinverse of A, or explain why it doesn't exist.

2. Consider the matrix
$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
.

- (a) Construct the singular value decomposition of A.
- (b) Write down orthonormal bases for each the "four fundamental subspaces": the row space R_A , the nullspace N_A , the column space R_{A^T} , and the left nullspace N_{A^T} .
- (c) Find a left inverse, right inverse, and pseudoinverse of A, or explain why it doesn't exist.