Topic: Singular value decomposition, pseudo-inverses.

Read: Spectral theorems and singular value decomposition (SVD), by Shuhong Gao.

Do: Answer the following question.

1. Let $f: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear map defined by f(x) = Mx for $x \in \mathbb{R}^4$ where M = ABCand

- (a) Define the adjoint map $f^* \colon \mathbb{R}^3 \to \mathbb{R}^4$ (under the standard Euclidean inner product) and express it in terms of M.
- (b) Find a singular value decomposition (SVD) of M. (*Hint*: Observe that $A^T A$ and $C^T C$ are diagonal.)
- (c) Find all $x \in \mathbb{R}^4$ with ||x|| = 1 so that ||Mx|| is maximized.
- (d) Describe the eigenvalues and eigenvectors of $M^T M$.
- (e) Find the least square solution for Mx = b with $||x||_2$ minimal where $b = (1, 1, 1)^T$. (*Hint*: Use the pseudo-inverse of M.)