Topics: The four fundamental subspaces.

Read: Pages 1–2 of The Four Fundamental Subspaces: 4 Lines by Gil Strang.

https://web.mit.edu/18.06/www/Essays/newpaper_ver3.pdf

Do: Unless otherwise specified, let \mathbf{A} be an $m \times n$ matrix, which we can associate with a linear map $\mathbb{R}^n \to \mathbb{R}^m$. Let $C(\mathbf{A})$, $C(\mathbf{A}^T)$, $N(\mathbf{A})$, and $N(\mathbf{A}^T)$ denote the column space, row space, nullspace and left nullspace, respectively.

- 1. For each of the following part, construct a matrix A with the specific properties specified. In this problem, $n \times 1$ column vectors are written as ordered n-tuples.
 - (a) The column space contains (1,1,1) and the nullspace is the line of multiples of (1,1,1,1).
 - (b) \mathbf{A} is a 2 × 2 matrix whose column space equals its nullspace.
 - (c) The nullspace of \boldsymbol{A} consists of all linear combinations of (2,2,1,0) and (3,1,0,1). [Hint: Try a 2×4 matrix, and think of the "column picture."]
 - (d) The nullspace of \mathbf{A} consists of all multiples of (4, 3, 2, 1).
 - (e) The column space contains (1, 1, 5) and (0, 3, 1) and the nullspace contains (1, 1, 2).
- 2. Suppose we have a system $\mathbf{A}\mathbf{x} = \mathbf{b}$ with particular solution $\mathbf{x}_p = (2, 4, 0)$ and whose "homogeneous" solution \mathbf{x}_n (i.e., the nullspace of A) is the set of scalar multiples of (1, 1, 1).
 - (a) Construct such a 2×3 system. Sketch the "grid picture."
 - (b) Why can't there be a 1×3 system satisfying these conditions? Sketch the "grid picture" and show how it fails.
- 3. Let **A** be an $m \times n$ matrix.
 - (a) Prove that the nullspace of \mathbf{A} is orthogonal to the row space.
 - (b) Prove that the column space of A is orthogonal to the left nullspace.