Topics: Orthogonality, Gram-Schmidt, and QR factorization

Do: Answer the following questions.

- 1. In this problem you will prove that orthonormal vectors are linearly independent two different ways.
 - (a) Vector proof: First, suppose that $c_1 \mathbf{q}_1 + c_2 \mathbf{q}_2 + \cdots + c_k \mathbf{q}_k = \mathbf{0}$. Show that each $c_i = 0$. [*Hint*: Start by multipling both sides of the equation by \mathbf{q}_i^T .]
 - (b) Matrix proof: Let Q be the matrix whose columns are the q_i 's. Show that if Qx = 0, then x = 0. [Hint: Since Q need not be square, you cannot assume Q^{-1} exists, but Q^T of course will.]
- 2. Recall that if $||\boldsymbol{u}|| = 1$, then the rank-1 matrix $\boldsymbol{u}\boldsymbol{u}^T$ is the projection matrix onto \boldsymbol{u} . In this case, $\boldsymbol{Q} = \boldsymbol{I} 2\boldsymbol{u}\boldsymbol{u}^T$ is a reflection matrix.
 - (a) Reflecting twice across the same axis is the identity. Verify that indeed, $Q^2 = I$.
 - (b) Compute Qu, and simplify this expression as much as possible.
 - (c) Suppose v is orthogonal to u. Compute Qv, and simplify as much as possible.
 - (d) Describe in plain English which subspace Q is reflecting across. Your answer should involve u. Include a sketch.
 - (e) Compute the reflection matrix $\mathbf{Q}_1 = \mathbf{I} 2\mathbf{u}_1\mathbf{u}_1^T$ where $\mathbf{u}_1 = (0, 1)$. Compute $\mathbf{Q}_1\mathbf{x}_1$, where $\mathbf{x}_1 = (a, b)$, and sketch the vectors \mathbf{u}_1 , \mathbf{x}_1 , and $\mathbf{Q}_1\mathbf{x}_1$ in the plane.
 - (f) Compute the reflection matrix $\mathbf{Q}_2 = \mathbf{I} 2\mathbf{u}_2\mathbf{u}_2^T$ where $\mathbf{u}_2 = (0, \sqrt{2}/2, \sqrt{2}/2)$. Compute $\mathbf{Q}_2\mathbf{x}_2$, where $\mathbf{x}_2 = (1, 1, 1)$, and sketch the vectors \mathbf{u}_2 , \mathbf{x}_2 , and $\mathbf{Q}_2\mathbf{x}_2$ in \mathbb{R}^3 .
- 3. Let **a**, **b**, and **c** be the (independent) column vectors of the matrix

$$\boldsymbol{M} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix},$$

whose column space is the orthogonal complement to the vector (1, 1, 1, 1). Use the Gram-Schmidt process to produce an orthonormal basis \mathbf{q}_1 , \mathbf{q}_2 , and \mathbf{q}_3 . Then write $\mathbf{M} = \mathbf{Q}\mathbf{R}$, where \mathbf{Q} is orthogonal and \mathbf{R} is upper-triangular.