Topics: Vector spaces and subspaces

Do: Answer the following questions.

- 1. Let X be a vector space over a field K. Let 0 be the zero element of K, and $\mathbf{0}$ the zero element of X. Using only the definitions of a group, vector space, and field, carefully prove the following.
 - (i) (-1)x = -x for all $x \in X$.
 - (ii) For every $k \in K$ and $x \in X$, if kx = 0, then k = 0 or x = 0.
- 2. Let X be a vector space.
 - (i) Prove that for any collection $\{Y_{\alpha} \mid \alpha \in A\}$ of subspaces, $\bigcap_{\alpha} Y_{\alpha}$ is a subspace.
 - (ii) Prove that for any subset $S \subseteq X$ of a vector space,

$$\operatorname{Span}(S) = \bigcap_{S \subseteq Y_{\alpha} \le X} Y_{\alpha}.$$

Here, the intersection is taken over all subspaces Y_{α} of X that contain S.

3. Let Y and Z be subspaces of a vector space X, with Y + Z = X. That is,

$$Y + Z := \{ y + z \mid y \in Y, z \in Z \} = X.$$

Prove that the following are equivalent:

- (i) $Y \cap Z = \{0\}.$
- (ii) Every $x \in X$ can be written uniquely as x = y + z, for some $y \in Y$ and $z \in Z$.