Topics: Spanning, linear independence, basis

Do: Answer the following questions. Throughout, assume that X is a finite-dimensional vector space over a field K.

- 1. Show that $B = \{x_1, \dots, x_n\}$ is a basis if and only if every $x \in X$ can be written uniquely using the vectors in B.
- 2. Let S be a linearly independent subset of X. Prove the exchange property: For any nonzero $x_0 \in \text{Span}(S)$, there exists $x_1 \in S$ such that $S' = (S \setminus \{x_1\}) \cup \{x_0\}$ is a basis for Span(S).
- 3. Let $S = \{s_1, \ldots, s_k\} \subset X$. Prove that the following are equivalent:
 - (a) S is a *minimal* spanning set.
 - (b) S is a maximal linear independent set.
 - (c) S is a basis.