Topics: The dual of a vector space **Do**: Answer the following questions. - 1. Let X be a vector space over a field K and let X' be the set of linear functions from X to K, also known as the *dual space* of X. - (a) Let x_1, \ldots, x_n be a basis for X. Define $\ell_j \in X'$ by $\ell_j(x_i) = \delta_{ij}$. Show that ℓ_1, \ldots, ℓ_n is a basis for X'; it is called the *dual basis* of x_1, \ldots, x_n . - (b) Find the dual basis of $x_1 = (1, -1, 3)$, $x_2 = (0, 1, -1)$, and $x_3 = (0, 3, -2)$ in $X = \mathbb{R}^3$. - (c) Express the scalar function $f \in X'$, where f(x, y, z) = 2x y + 3z as a linear combination of the dual basis, ℓ_1, ℓ_2, ℓ_3 , from Part (b). - 2. Let \mathcal{P}_2 be the vector space of all polynomials $p(x) = a_0 + a_1 x + a_2 x^2$ over \mathbb{R} , with degree ≤ 2 . Let ξ_1, ξ_2, ξ_3 be distinct real numbers, and define $$\ell_i \colon \mathcal{P}_2 \longrightarrow \mathbb{R}, \qquad \ell_i(p) = p(\xi_i) \quad \text{for} \quad j = 1, 2, 3.$$ - (a) Show that ℓ_1, ℓ_2, ℓ_3 is a basis for the dual space \mathcal{P}'_2 . - (b) Find polynomials $p_1(x), p_2(x), p_3(x)$ in \mathcal{P}_2 of which ℓ_1, ℓ_2, ℓ_3 is the dual basis in \mathcal{P}'_2 .