Topics: Linear maps.

Do: Answer the following questions. Throughout, assume that X is a finite-dimensional vector space over a field K.

- 1. Let $T: X \to U$ be a linear map.
 - (a) Show that the image T(X) (i.e., the range, R_T) is a subspace of U.
 - (b) Show that the *preimage* of a subspace $V \leq U$, denoted

$$T^{-1}(V) := \{ x \in X \mid Tx \in V \},$$

is a subspace of X.

- 2. Let $A: X \to X$ be a linear map.
 - (a) Prove that if $\dim(X) < \infty$, then the following are equivalent:
 - (i) A is bijective.
 - (ii) A is injective.
 - (iii) A is surjective.
 - (b) How can the results of Part (a) fail if $\dim(X) = \infty$? Give an explicit example to demonstrate this.