Topic: Multilinearity

Do: Answer the following questions. Throughout, assume that X is a finite-dimensional vector space over a field K. A k-linear form $f: X^k \to K$ is:

- symmetric if $f(x_1, ..., x_k) = \pi \cdot f(x_1, ..., x_k) := f(x_{\pi^{-1}(1)}, ..., x_{\pi^{-1}(k)})$ for all $\pi \in S_k$,
- skew-symmetric if $\tau \cdot f(x_1, \dots, x_k) = -f(x_1, \dots, x_k)$ for all transpositions $\tau = (ij) \in S_k$,
- alternating if $f(x_1, ..., x_k) = 0$ whenever $x_i = x_j$.
- 1. Let f be a bilinear form over a vector space X with basis $\{x_1, x_2\}$.
 - (a) Assume f is alternating. Determine a formula for f(u, v) in terms of each $f(x_i, x_j)$ and the coefficients used to express u and v with this basis.
 - (b) Repeat Part (a) but assume that f is symmetric, and that f(x,x) = 0 for all $x \in X$.
 - (c) Repeat Part (a) but now assume that X is 3-dimensional, with basis $\{x_1, x_2, x_3\}$.
- 2. Let $A = (c_1, \ldots, c_n)$ be an $n \times n$ matrix $(c_i$ is a column vector), and let B be the matrix obtained from A by adding k times the i^{th} column of A to the j^{th} column of A, for some $i \neq j$. Show that det $A = \det B$. You may assume that the determinant is an alternating n-linear form.
- 3. Let f be an alternating k-linear form. Show that if y_1, \ldots, y_k are linearly dependent, then $f(y_1, \ldots, y_k) = 0$. Then give an explicit counterexample to show how the converse fails.