Topic: Eigenvalues.

Do: Answer the following questions. Assume that all matrices are over the field $K = \mathbb{C}$.

1. Find the eigenvalues and eigenvectors for the following matrices:

$$m{A} = egin{bmatrix} -1 & 0 & 1 & 0 \ 2 & 1 & 2 & 1 \ 0 & 0 & -1 & 0 \ 4 & 0 & -6 & 1 \end{bmatrix}, \qquad m{B} = egin{bmatrix} 1 & 0 & 0 & 1 \ 2 & 1 & 0 & -4 \ 1 & 0 & 1 & -2 \ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad m{J}_{\lambda} = egin{bmatrix} \lambda & 1 & & & \\ \lambda & \ddots & & \\ & & \ddots & 1 \\ & & & \lambda \end{bmatrix}.$$

2. The characteristic polynomial of \boldsymbol{A} is $\chi_{\boldsymbol{A}}(t) = \det(t\boldsymbol{I} - \boldsymbol{A})$. Suppose this factors as

$$\chi_{\mathbf{A}}(t) = (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_n).$$

- (a) Plug in t = 0 and find a formula for det \mathbf{A} in terms of the eigenvalues of \mathbf{A} .
- (b) The *trace* of \boldsymbol{A} , denoted tr \boldsymbol{A} , is the sum of the diagonal entries, which is also equal to the sum of the eigenvalues. If \boldsymbol{A} is 2×2 , then

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 has $\det(tI - \mathbf{A}) = t^2 - (a+d)t + (ad-bc) = 0.$

Write a formula for the characteristic polynomial of a 2×2 matrix in terms of det \boldsymbol{A} and tr \boldsymbol{A} .

- (c) Suppose \mathbf{A} is an $n \times n$ matrix with characteristic polynomial $\chi_{\mathbf{A}}(t) = t^n + c_{n-1}t^{n-1} + \cdots + c_1t + c_0$. Describe det \mathbf{A} and tr \mathbf{A} in terms of the c_i 's.
- (d) Explain why AB BA = I is impossible for $n \times n$ matrices.
- 3. Suppose \boldsymbol{A} is a 3×3 matrix with eigenvalues 0, 3, and 5, with respective eigenvectors \boldsymbol{u} , \boldsymbol{v} , and \boldsymbol{w} .
 - (a) Give a basis for the nullspace and a basis for the column space.
 - (b) Find a particular solution to Ax = v + w. Then, find all solutions.
 - (c) Explain why $\mathbf{A}\mathbf{x} = \mathbf{u}$ has no solution.