Topic: Eigenvectors and generalized eigenvectors.

Do: Answer the following questions. Assume that all matrices are over the field $K = \mathbb{C}$.

The characteristic polynomial of an $n \times n$ matrix A is $p_A(t) := \det(tI - A)$. By the Cayley Hamilton theorem, $p_A(A) = 0$. The minimal polynomial is the smallest-degree monic polynomial $m_A(t)$ for which $m_A(A) = 0$, and it must divide $p_A(t)$.

1. Consider the following matrices:

$$A = \begin{bmatrix} 7 & 6 \\ 6 & -2 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & -2 & 2 \\ -2 & -1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$.

- (a) Find the characteristic and minimal polynomials of each.
- (b) Diagonalize each matrix into QDQ^T , where Q is a (real-valued) orthogonal matrix.
- (c) Find all orthogonal matrices that diagonalize \boldsymbol{A} . How many will diagonalize \boldsymbol{B} ?
- 2. Do the following for the matrix A from the previous worksheet, and then repeat it for B.

$$\boldsymbol{A} = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 2 & 1 & 2 & 1 \\ 0 & 0 & -1 & 0 \\ 4 & 0 & -6 & 1 \end{bmatrix}, \qquad \boldsymbol{B} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & -4 \\ 1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad \boldsymbol{J}_{\lambda} = \begin{bmatrix} \lambda & 1 & & & \\ & \lambda & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda \end{bmatrix}.$$

- (a) For each eigenvalue λ , compute dim $N_{(\mathbf{A}-\lambda \mathbf{I})^j}$ for $j=1,2,3,\ldots$
- (b) Find the characteristic and minimal polynomials, and all (genuine) eigenvectors.
- (c) Find a basis \mathcal{B} of \mathbb{C}^4 consisting of generalized eigenvectors, so that the matrix with respect to this basis is $J = P^{-1}AP$, where J is a *Jordan matrix*. This means that J is block-diagonal formed from *Jordan blocks* J_{λ} ; see above.
- 3. If $A: X \to X$ is a linear map, then a subspace $Y \subseteq X$ is A-invariant if $A(Y) \subseteq Y$. Show that for any scalar $\lambda \in K$, not necessarily an eigenvalue, the subspace Y is A-invariant if and only if it is $(A \lambda I)$ -invariant.