Topic: Eigenspaces and Jordan canonical form.

Do: Answer the following questions. Assume that all matrices are over the field $K = \mathbb{C}$.

- 1. Consider the matrices $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & -3 & 0 \\ -3 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.
 - (a) Decompose \mathbb{R}^3 into a direct sum of eigenspaces of each matrix.
 - (b) Further decompose the 2-dimensional A-eigenspace as a direct sum of two 1-dimensional B-eigenspaces, and vice-versa.
 - (c) Write \mathbb{R}^3 as a direct sum of three 1-dimensional subspaces that are common eigenspaces of A and B, two different ways.
 - (d) For each of your answers to Part (c), find a matrix P so that $P^{-1}AP = D_A$ and $P^{-1}BP = D_B$, where D_A and D_B are diagonal.
- 2. Let **A** be a 7×7 matrix over \mathbb{C} with minimal polynomial $m(t) = (t-1)^3(t-2)^2$.
 - (a) List all possible Jordan canonical forms of A up to similarity.
 - (b) For each matrix from Part (a), find the rank of $(\boldsymbol{A} \boldsymbol{I})^k$ and $(\boldsymbol{A} 2\boldsymbol{I})^k$, for $k \in \mathbb{N}$.
- 3. Let A be an $n \times n$ matrix over \mathbb{C} . The matrix \mathbf{A} is nilpotent if $\mathbf{A}^k = 0$ for some $k \in \mathbb{N}$, and \mathbf{A} is idempotent if $\mathbf{A}^2 = \mathbf{A}$.
 - (a) Prove that if $\mathbf{A}^k = \mathbf{A}$ for some integer k > 1, then \mathbf{A} is diagonalizable.
 - (b) Prove that idempotent matrices are similar if and only if they have the same trace.
 - (c) Prove that if \mathbf{A} is nilpotent, then $A^n = 0$.
 - (d) Prove that if \mathbf{A} is nilpotent, then there is some $r \in \mathbb{N}$ and positive integers $k_1 \ge \cdots \ge k_r$ with $k_1 + \cdots + k_r = n$ that determine A up to similarity.
 - (e) Suppose \boldsymbol{A} and \boldsymbol{B} are 6×6 nilpotent matrices with the same minimal polynomial and dim $N_{\boldsymbol{A}} = \dim N_{\boldsymbol{B}}$. Prove that \boldsymbol{A} and \boldsymbol{B} are similar. Show by example that this can fail for 7×7 matrices.