Topic: Inner products.

Do: Answer the following questions. Assume that all matrices are over the field $K = \mathbb{R}$.

1. Let $X = \mathbb{R}^3$, and define the inner product by

$$\langle x, y \rangle = y^T A x = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 2 & -\sqrt{2} & 0 \\ -\sqrt{2} & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Find the norm of the three unit basis vectors e_1 , e_2 , and e_3 , the angles between them, and the orthogonal complements of the lines that they span.

- 2. Given a linear map $A: X \to X$, the function $f: X \to X$ defined by $f(x,y) = x^T A y$ is an inner product on X if A is symmetric and positive-definite.
 - (a) Find the matrix A that defines the following inner product:

$$f(x,y) = 3x_1y_1 - x_1y_2 - x_2y_1 + 2x_2y_2 - x_2y_3 - x_3y_2 + 3x_3y_3 = x^T Ay.$$

- (b) Find an orthonormal basis v_1, v_2, v_3 of \mathbb{R}^3 so that with respect to this basis, $f(z, w) = z^T Dw$ for some diagonal matrix D.
- (c) Write a formula for f(z, w) like in Part (b), but with respect to this new basis.
- 3. Let f and g be continuous functions on the interval [0,1]. Prove the following inequalities.

(a)
$$\left(\int_0^1 f(t)g(t) dt\right)^2 \le \int_0^1 f(t)^2 dt \int_0^1 g(t)^2 dt$$

(b)
$$\left(\int_0^1 (f(t)+g(t))^2 dt\right)^{1/2} \le \left(\int_0^1 f(t)^2 dt\right)^{1/2} + \left(\int_0^1 g(t)^2 dt\right)^{1/2}$$
.