Topic: Singular value decomposition, pseudo-inverses.

Read: Spectral theorems and singular value decomposition (SVD), by Shuhong Gao.

Do: Answer the following question.

1. Consider the following matrices:

$$A = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}, \qquad A^T A = \begin{bmatrix} 25 & 7 \\ 7 & 25 \end{bmatrix}, \qquad AA^T = \begin{bmatrix} 32 & 0 \\ 0 & 18 \end{bmatrix}.$$

- (a) Find the eigenvalues σ_1^2 , σ_2^2 and unit eigenvectors v_1 , v_2 of A^TA .
- (b) For the $\sigma_i \neq 0$, compute $u_i = Av_i/\sigma_i$ and verify that indeed $||u_i|| = 1$. Find the other u_i by computing the other unit eigenvector of AA^T .
- (c) Construct the singular value decomposition (SVD), $A = U\Sigma V^T$.
- (d) Write down orthonormal bases for each the "four fundamental subspaces": the row space R_A , the nullspace N_A , the column space R_{A^T} , and the left nullspace N_{A^T} .
- (e) Describe all matrices that have the same four fundamental subspaces.
- (f) Find a left, right, and pseudoinverse of A, or explain why it doesn't exist.
- 2. Consider the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$.
 - (a) Construct the singular value decomposition of A.
 - (b) Write down orthonormal bases for each the "four fundamental subspaces": the row space R_A , the nullspace N_A , the column space R_{A^T} , and the left nullspace N_{A^T} .
 - (c) Find a left inverse, right inverse, and pseudoinverse of A, or explain why it doesn't exist.
- 3. Let $f: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear map defined by f(x) = Mx for $x \in \mathbb{R}^4$ where M = ABC and

- (a) Define the adjoint map $f^* \colon \mathbb{R}^3 \to \mathbb{R}^4$ (under the standard Euclidean inner product) and express it in terms of M.
- (b) Find a singular value decomposition (SVD) of M. (Hint: Observe that A^TA and C^TC are diagonal.)
- (c) Find all $x \in \mathbb{R}^4$ with ||x|| = 1 so that ||Mx|| is maximized.
- (d) Describe the eigenvalues and eigenvectors of M^TM .
- (e) Find the least square solution for Mx = b with $||x||_2$ minimal where $b = (1, 1, 1)^T$. (*Hint*: Use the pseudo-inverse of M.)