
Class schedule: Bridge Course (Linear Algebra), Summer 2025

All slides, papers, and book chapters will be made available on the course webpage.

WEEK 1

Mon. June 30. Welcome, tea & donuts, introductions, course overview, discussion about our
graduate program, future plans, etc.

Tues. July 1. Systems of equations and matrix multiplication. Four ways to think about the
fundamental problem in linear algebra: solving linear equations in n variables.

(1) Matrix form
(2) Row picture

(3) Column picture
(4) Grid picture

The example of {2x − y = 0, −x + 2y = 3} was used. Then we did a 3 × 3 example:
{2x − y = 0, −x + 2y − z = −1, −3y + 4z = 4}. Note how changing up the RHS changes
the planes (row picture), but barely changes the column or grid pictures.

Then, we talked about 4 ways to multiply matrices AB = C, where A is m× n and B is n× p.

(1) Rows times columns: Cij = (row i) · (column j) =
n∑
k=1

aikbkj .

(2) By columns: A[b1 · · · bp] = [Ab1 · · ·Abp]. Each column Abi is a linear combination of the
columns of A.

(3) By rows:

a
T
1
...
aTm

B =

a
T
1 B
...

aTmB

. Each row aTj B is a linear combination of the rows of B.

(4) Columns times rows. This is a sum of n2 rank-1 matrices,
n∑

j,k=1

ajb
T
k .

Wed. July 2. The four fundamental subspaces. Given an m × n matrix A, we introduced the
subspaces

(1) Column space C(A) in Rm
(2) Row space C(AT ) in Rn
(3) Nullspace N(A) in Rn
(4) Left nullspace C(AT ) in Rm.

We stated, without proving (will do later, in more generality) that C(A) and C(AT ) have the
same rank, and that these subspaces come in orthogonal complement pairs:

Rn = C(A)⊕N(AT ), Rm = C(AT )⊕N(A).

We proved that N(A) = N(ATA) under “undergraduate notation” (dot products). Then, we

discussed inner products, and used (x, y) = yTAx as an example, for A =

[
2 1
1 2

]
. It was slightly

cleaner to prove N(A) = N(ATA) with this notation.

We discussed subspaces and their sums, such as the difference between Y +Z and Y ⊕Z. The
former can always be defined, whereas the latter occurs only when Y ∩ Z = {0}. An equivalent
condition (HW) is that every element in Y ⊕ Z can be written uniquely as y + z, for y ∈ Y and
z ∈ Z. This lead to the formula

dim(X + Y ) = dimY + dimZ + dim(Y ∩ Z),

with the caveat that (i) we haven’t yet defined dimension, and (ii) we don’t yet know how to
prove this. We illustrated this with two examples: Y = xy-plane and Z = yz-plane, and also with
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Z = z-axis.

We discussed how to solve an inhomogeneous system Ax = b. The “general solution” has the
form x = xn + xp, where Axn = 0 and xp is “any particular solution.”

Thurs. July 3. Projections and least squuares. We started with an application of how the
solution to the system Ax = b has the form x = xn+xp: solving the ODE y′′+4y = 8. This is the

inhomomgeneous equation Ly = 8, for the linear operator L = d2

dt2 . More generally, the nullspace

of an nth order linear differential operation is n-dimensional.

Then, we explored how to project a vector b onto another vector a. The result p = xa satisfies

b = p + e, and we derived x = (aT b)/(aTa). Alternatively, we could describe b
P7−→ p with the

rank 1 matrix P = (aaT )/(aTa). This matrix satisfies PT = P and P 2 = P , which are defining
properties of projection matrices.

More generally, projections arise if we want to solve an underdetermined system Ax = b, where
b 6∈ C(A). The “best fit” solution is to solve Ax̂ = p, where p is the projection of b onto C(A).
We showed how can be done by solving ATAx̂ = AT b. Reason: If A = [a1 · · · an] and we write
Ax̂ = p = x̂1a1 + · · ·+ x̂nan, then ai ⊥ e = (b−Ax̂) means that aTi (b−Ax̂) = 0, which gives the
equation AT (b−Ax̂) = 0.

As a takeaway message, if S is a subspace with basis a1, . . . , ar, then the projection matrix onto
SS is P = A(ATA)−1AT , where A = [a1 · · · ar].

We finished by showing how a classic least squares problems can be viewed as an overdetermined
linear system, using an example with three points (1, 1), (2, 2), and (3, 2). Any line b = C + Dt
through these points would lead to a linear system {C + D = 1, C + 2D = 2, C + 3D = 2} that
has no solution. However, by solving ATAx̂ = AT b instead, we find that the best fit line is when
C = 2/3 and D = 1/2. We concluded with a remark that we can find a degree-2 polynomial
b = C+Dt+Et2 that fits this data, because this would lead to a 3×3 system, which has a unique
solution.

Fri. July 4. Holiday; no class.

WEEK 2

Mon. July 7. Orthogonality, least squares, and QR factorization. We reviewed what it means for
a set of vectors to be orthogonal, and orthonormal. A square matrix Q is orthogonal if QTQ = I,
which is equivalent to its columns being orthonormal.

Next, we discussed how to decompose a vector into an orthogonal basis. As an example, note
that

v = (4, 3) = 4e1 + 3e2 = (v · e1)e1 + (v · · · e2)e2.

If we use a different basis, like v1 = (
√

2/2,
√

2/2) and v2 = (
√

2/2,
√

2/2).

v = (v · v1)v1 + (v · · · v2)v2 = 4.95v1 + 0.701v2.

We can do this with an orthogonal basis w1, . . . , wn that isn’t orthonormal by replacing v ·wi with
(v · wi)/(wi · wi).

An example application of this is Fourier series. If f(x) is a piecewise continuous 2π-periodic
function, then it can be decomposed uniquely into a sum f(x) = a0

2 +
∑
an cos(nx) + bn sin(nx).

There are some technical details that require analysis to formalized, such as what happens at
the points of discontinunity, an the fact that infinite sums are allowed. This all works because
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the set { 1√
2
, cos(nx), sin(nx) | n ∈ Z} is an orthonormal basis with respect to the inner product

〈f, g〉 = 1
π

∫ π
−π f(x)g(x) dx. We discussed complex Fourier series, and the original motivation for

their discovery: solving PDEs on bounded domains.

Tues. July 8. Vector spaces and subspaces. We started with the Gram-Schmidt process, which
takes an independent set of vectors, and outputs an orthonormal set. Finally, we mentioned how
the Gram-Schmidt process can be described in matrix language. Specificaly, if M = [a1, . . . , an]
is the original basis, and Q = [q1, . . . , qn] the orthonormal basis from computing Gram-Schmidt,
then these are related by M = QR, where rij = qi · aj .

We gave the formal definition of a vector space. For this, we needed the formal definition of a
group and a field. We discussed how to formally prove a few “obvious” facts, such as uniqueness
of an identity element, uniqueness of inverses, and that 0x = 0 for all vectors x ∈ X. We formally
defined linear maps in this setting, though we discusse linearity earlier.

We defined linear combinations and spanning sets, and discussed the proof of

Span(S) =
⋂

S⊆Yα≤X

Yα.

The RHS of this is the “smallest subspace that contains S.” It shows how a subspace can be de-
fined “from the bottom, up” (as linear combinations), or “from the top, down.” (as intersections)

Wed. July 9. We started with some examples of mathematical objects that can be defined “from
the bottom, up” or “from the top, down.” The convex hull is one such example. This equality fails
for the defintion of an ideal, if the ring does not have unity (example, I = (2) in R = 2Z. In some
cases, like the “smallest normal subgroup containing a set,” there isn’t a bottom-up definition.

Next, we talked about spanning sets, linear independence, and bases. We proved some basic
facts, like how all bases of the same size, called its dimension, and gave examples of how this fails
in groups (e.g., Sn). We showed how one can always extend an independent set to a basis, and
how one can always remove vectors from a dependent set until it is independent.

Thurs. July 10. We talked about complements and direct sums, and compared direct sums
to direct products. These are the same when things are finite, but they differ in the infinite-
dimensional cases. As an example, we compared the space R × R × · · · of infinite sequences (∼=
power series) to teh space R⊗R⊗ · · · of finite sums (∼= polynomials). Just for fun, we discussed
`p spaces from functional analysis.

Fri. July 11. No class. Will be made up later.

WEEK 3

Mon. July 14. We defined what it meant for two vectors to be equivalent modulo Y . Our two
running examples were Y = xy-plane and Z = yz-plane, and also with Z = z-axis. We discussed
what it meant to be well-defined, and left the proof that addition and scalar multiplication in
X/Y being well-defined for the HW.

We proved that dimX = dimY + dimX/Y and outlined how that can be used to prove

dimU + dimV − dim(U ∩ V ) = dimX.

The first step was to consider the case when U ∩ V = {0}, i.e., X = U ⊕ V , which we’ve already
done. More generally, if W = U ∩ V , when we can take the quotient of everything by W , and get
that X = U + V . This, with the previous results proven today, gives the desired result.
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Tues. July 15. We spent this day going over some of the main ideas in group theory, with a
focus on visualizations. Specifically, we discussed cosets, and how a quotient group G/H is defined
iff and only if H is normal. Specifically, what it mean to be well-defined, and how and why can
this fail? Then, we moved onto the isomorphism theorems, because they have analogues in linear
algebra.

Wed. July 16. We applied the first isomorphism theorem (X/Ker f ∼= Im f) to dimY +
dimX/Y = dimX to get the rank-nullity theorem: dimX = rank f + nullity f . Then we dis-
cussed how every group is a quotient of a free group, and how the construction is done by starting
with a free group on the same number of generators, and taking the quotient of the smallest
normal subgroup that contain all relators.

In the second half of class, we discussed the dual space X ′, which is the space of all linear scalar
functions ` : X → K. We showed how every co-vector can be written as `(x) = a1c1 + · · ·+ ancn,
where x = a1x1 + · · ·+ anxn. In light of this, one can think of elements in X (vectors) as column
vectors, and elements in X ′ (co-vectors) as row vectors. It is convenient to denote (`, x) := `(x).
Given a basis x1, . . . , xn, the dual basis in X ′ is `1, . . . , `n, where `i(xj) = δij . The Riesz repre-
sentation theorem from functional analysis “basically” says that in a Hilbert space, every linear
functional is the the inner product on some fixed vector (there are other technical conditions).
For a non-example, note that in `1(R), the “dot product with (1, 1, 1, . . . )” is a linear functional,
despite (1, 1, 1, . . . ) 6∈ `1(R).

Thurs. July 17. While going over the assigned homework, we took a tangent and showed two
applications of the rank-nullity theorem to polynomials (interpolation and average values).

We reviewed the dual space and the advantage of using the notation (`, x) = `(x). This helped
us understand the double dual X ′′, whose elements can be thought of as “evaluation maps.” The
space X ′′ can be canonically identified with X, whereas there is no such basis-free identification
with X ′. We defined the annihilator Y ⊥ of a subspace Y ≤ X, and proved a few basic properties
about it. Along the way, we discussed `p-spaces, and what properties fail in infinite-dimensional
spaces.

Fri. July 18. We discussed the transpose of a linear map T : X → U . This is a map T : U ′ → X ′

such that (`, Tx) = (T ′`, x) for all x ∈ X and u ∈ U . We gave short proofs of some basic prop-
erties, such as (TS)′ = S′T ′, that rank(T ) = rank(T ′), and that R⊥ = NT ′ . All of these have
special cases in terms of matrices that are much harder to prove directly.

WEEK 4

Mon. July 21. We showed how to define the matrix of a linear map, given an “input basis”
x1, . . . , xn and an “output basis” u1, . . . , um. We saw several examples, such as the projection onto
the line y = x with two different bases: {e1, e2}, and the rotation of this by 45◦. We pondered an
exercise left for the homework about how, given an arbitrary linear map T : X → U , to pick an

input basis and output basis so the matrix is

[
Ir 0
0 0

]
. We showed that the matrix of the transpose

of a linear map was the transpose of the matrix.

We saw how the two matrices for the project example are related by a “change of basis” matrix,
and how to construct such a matrix, using our old “grid picture” for motivation.

Tues. July 22. We started the day talking about change of basis matrices. If A is the matrix
with respect to the basis e1, . . . , en, then P−1AP is the matrix with respect to the basis x1, . . . , xn,
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where P = [x1 · · ·xn] is the “change of basis matrix”:

new basis

old basis

X X

X X

P−1AP

P P

A

We spent the rest of the day talking about multilinear forms (functions). A function f : Xk → K
is k-linear if fixing any k−1 coordinates leaves a linear function. 1-linear is just “linear” ` : X → K,
and 2-linear is bilinear. The space of k-linear functions is nk-dimensional.

A basis of the 1-linear functionals are the dual vectors `1, . . . , `n, where `j(xi) = δij . A basis
for the the 2-linear functionals are the functions fij , 1 ≤ i, j ≤ n, where

fij(xk, x`) =

{
1 i = k, j = `

0 else

This means that every bilinear function can be written uniquely as

f(x, y) =
∑

1≤i,j≤n

cijfij(x, y).

A bilinear function is symmetric if f(x, y) = f(y, x), and skew-symmetric if f(x, y) = −f(x, y).
Note that the subspace of symmetric bilinear functions has dimension n(n+ 1)/2, and the skew-
symmetric functions have dimension n(n − 1)/2. Since these sum to n2, every bilinear function
can be written uniquely as a sum of a symmetric and skew-symmetric function.

This generalizes from bilinear to trilinear in the predictable way, but it’s notationally messy.
For example, the space of trilinear functions has dimension n3, with

f(x, y, z) =
∑

1≤i,j,k≤n

cijkfijk(x, y, z).

A k-linear form f : Xk → K is:

• symmetric if f(x1, . . . , xk) = π · f(x1, . . . , xk) := f(xπ−1(1), . . . , xπ−1(k)) for all π ∈ Sk,
• skew-symmetric if τ · f(x1, . . . , xk) = −f(x1, . . . , xk) for all transpositions τ = (ij) ∈ Sk,
• alternating if f(x1, . . . , xk) = 0 whenever xi = xj .

To emphasize the subtle difference of left vs. right actions of permutations, we finished with a
detour to the symmetric groups, and used some visuals involving Cayley graphs and the permu-
tahedron.

Wed. July 23.
We proved that for multilinear forms, alternating implies skew-symmetric; to see this, just take

0 = f(x+ y, x+ y) = f(x, x) + f(x, y) + f(y, x) + f(y, y)

The converse is false, but only if K = F2.
By expanding the determinant as∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a11 0 0
0 a22 0
0 0 a33

∣∣∣∣∣∣+

∣∣∣∣∣∣
a11 0 0
0 0 a23
0 a32 0

∣∣∣∣∣∣+

∣∣∣∣∣∣
0 a12 0
a21 0 0
0 0 a33

∣∣∣∣∣∣+ · · · ,

we can derive formulas such as

detA =
∑
π∈Sn

(signπ)a1,π(1)a2,π(2) · · · an,π(n) =
∑
π∈Sn

(signπ)aπ(1),1aπ(2),2 · · · aπ(n),n = detAT .

We saw why the space of alternating n-linear functions was one-dimensional. We also defined
the universal property of determinant, which allowed us to quickly establish properties such as
detAB = (detA)(detB).
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Finally, we defined the trace of a matrix to be the sum of its diagonal entries, and discussed
why tr(AB) = tr(BA). The trace of A also happens to be the sum of its eigenvalues, but we’ll see
that next.

Thurs. July 24. We revisited the concept of eigenvalues and eigenvectors, and how to solve

Av = λv. We did a 2× 2 matrix as an example, using A =

[
3 2
1 4

]
. We diagonalized this matrix,

by writing D = P−1AP , and interpreted that geometrically. By writing A = PDP−1, it is easy
to quickly compute large powers of A, because Ak = PDkP−1.

We paused for a few examples and applications of this. We discussed Markov chains, and did
a simple 2× 2 example. Then we say several more complicated examples of population matrices,
where the long term behavior is governed by lim

k→∞
Ak.

We discussed the importants of eigenvalues in ODEs, where a 2nd order linear ODE can be
written as a 2 × 2 system. As an example, given x′′ + 2cx′ + ω2x = sin(ω0t), define v = x′, and
then this becomes [

x′

v′

]
=

[
0 1
−ω2 −2c

] [
x
v

]
+

[
0

sin(ω0t)

]
.

We the saw how x′ = Ax has solution x(t) = eλtv, and showed how this affect the dynamics in
the phase space, which is the plot of x2(t) vs. x1(t).

Fri. July 25. We proved two basic facts about eigenvectors: (i) Every n× n matrix A has one,
and (ii) eigenvectors from distinct eigenvalues are linearly independent.

By computing pA(t) = det(tI − A) as a sum of n! scalars of permutation matrices, it is ap-
parent that only one term contains powers of t above n − 2. This helps us see that pA(t) =
tn − (trA)n−1 + · · · + (−1)n det(A), and that tr(A) and det(A) are the sum and product of the
eigenvalues, respectively.

We remarked that if Av = λv, then Akv = λkv for all k ∈ N, and more generally, q(A)v = q(λ)v
for any polynomial q(t). Next, we moved onto the concept of diagonalization. The following are
equivalent for A : X → X:

(1) A = PDP−1 for some diagonal matrix D.
(2) X has a basis of eigenvectors for A.

The diagonal entries are the eigenvalues, and the columns of P are the eigenvectors.

eigenvector basis

standard basis

X X

X X

D = P−1AP

P P

A = PDP−1

We finished by defining a few concepts that will be studied more in the next class: minimal poly-
nomials and generalized eigenvectors.

WEEK 5

Mon. July 28. We discussed what happens if A isn’t diagonalizable, which only occurs if it has a
repeated eigenvalue but not enough eigenvectors. In this case, the “Spectral Theorem” guarantees
that X has as basis of so-called generalized eigenvectors. These are vectors in the nullspace of
(A − λI)k for some k ∈ N. Note that “genuine eigenvectors” occur when k = 1. We stated the
spectral theorem in three different ways, given a linear map A : Cn → Cn.

(1) Cn has a full set of generalized eigenvectors of A.
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(2) Cn = N(A−λ1I)e
1 ⊕ · · · ⊕N

(A−λkI)ek .

(3) A is similar to a matrix in “Jordan canonical form.”

To understand this, we explored an example of a 11×11 matrix A with characteristic polynomial
pA(t) = (t − λ)11 and minimal polynomial mA(t) = (t − λ). Once possibility for the generalized
eigenvectors of such an example is the following:

v5 v4 v3 v2 v1 0

w3 w2 w1 0

x2 x1 0

y1 0

A−λI A−λI A−λI A−λI A−λI

A−λI A−λI A−λI

A−λI A−λI

A−λI

More generally, such “generalized eigenvector chains” correspond to Jordan blocks.
We discussed the idea of invariant subspaces, how these arise with generalized eigenvectors, and

how if A : X → X and X = V1 ⊕ · · · ⊕ Vk with each Vi being A-invariants, then A has a matrix in
block-diagonal form.

We defined the minimal polynomial mA(t), which divides pA(t), as the smallest monic polyno-
mial for which mA(A) = 0. We explored one of the two matrices from the HW, and found (most
of) the generalized eigenvectors of the matrix B:

A =


−1 0 1 0
2 1 2 1
0 0 −1 0
4 0 −6 1

 , B =


1 0 0 1
2 1 0 −4
1 0 1 −2
0 0 0 1

 .
This has characteristic polynomial pB(t) = (t− 1)4, two eigenvectors, and mB(t) = (t− 1)3.

We stated Jordan’s theorem, that two matrices are similar if and only if they have the same
Jordan canonical form.

Tues. July 29. We spent the first half of the class going over the relevant HW problems. In
particular, we considered matrices that satisfied equations such as An = 0, A2 = A, and Ak = A,
what we could say about their minimal polynomials, Jordan canoncial forms, and other related
questions.

We proved that if A and B are diagonalizable and commute, then they have a common basis
of eigenvectors. We also discussed what this really means.

We spent the last 30 minutes on inner products. We started with a real n-dimensional vector
space, and showed how the dot product endows the space with a norm, where ||x||2 = (x, x). We

derived cos θ = (x,y)
||x||·||y|| , and the law of cosines:

c2 = a2 + b2 − 2ab cos θ, a = ||x||, b = ||y||, c = ||x− y||.

Naturally, this works for any inner product, which is a bilinear function 〈 , 〉 : X ×X → K that
is symmetric and positive-definite, and cos(θ) can be defined similarly. Then we proved several
basic properties about the norm

• Cauchy-Schwarz: |(x, y)| ≤ ||x|| · ||y||
• Triangle inequality: ||x+ y|| ≤ ||x||+ ||y||.

Wed. July 30.
We characterized the norm as

||x|| = max
{

(x, y) : ||y|| = 1
}
.
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Recall that by the Riesz representation theorem, every linear scalar function can be expressed as
the projection onto some fixed vector y ∈ X, i.e., (−, y). This means that if X is endowed with
an inner product, then we can canonically identify X with its dual space X ′ in one of two ways:

L : X −→ X ′, y 7→ (−, y), or R : X −→ X ′, y 7→ (y,−).

The adjoint of a linear map A : X → U , is a map A∗ : U → X such that (Ax, u) = (x,A∗u) for
all x ∈ X and u ∈ U . In an R-vector space, A∗ is just the transpose, and in a C-vector space, it is
the conjugate transpose. This is related to the transpose, but it goes between the actual vectors
instead of the scalar functions.

X

K

U

T

m

`

X

K

U

T

(−, y)

(−, v)

That is, if A′ : (−, v) 7→ (−, y), then A′ : v 7→ y.
The equation 5x21 − 6x1x2 + 5x22 = 9 is an ellipse, and can be written as xTAx = 9 for a

symmetric matrix A. If we diagonalize it by A = PDPT , and let z = PTx, then zTDz = 9 which
is 8z21 + 2z22 = 9, which is easy to plot. The change of matrix P is a 45◦ rotation matrix, and so
the original ellipse is a rotation of the one in the z-coordinates.

We reviewed complex numbers, and defined the complex inner product as

〈z, w〉 = wHz = wT z =
[
w1 w2 · · · wn

]

z1
z2
...
zn

 .
We defined a complex inner product as a positive-definition sesquilinear form 〈 , 〉 : X ×X → K.
Some proofs for R-vector spaces can be carried over to C-vector spaces by replacing “T” with “H”,
throughout.

A linear map A : X → X is self-adjoint if A = A∗, which means that (Ax, u) = (x,Au) for all
x, u ∈ X. We proved several basic properties about self-adjoint linear maps:

(1) They have only real eigenvalues.
(2) They have a full set of eigenvectors
(3) Eigenvector from distinct eigenvalues are orthogonal (and so they have an orthonormal

set of eigenvectors).

Thurs. July 31.
Linear maps that have a full set of orthogonal eigenvectors include those that are (i) anti-self-

adjoint (A∗ = −A), and (ii) orthogonal (Q∗ = Q−1). More generally, we showed that the class of
linear maps that have this property are called normal, which is characterized by commuting with
its adjoint, i.e., NN∗ = N∗N . This was proven by writing such a map into a sum of a self-adjoint
and anti-self-adjoint map: N = H + A. The key observation is that N is normal iff HA = AH,
and commuting pairs of matrices have a common set of eigenvectors.

A linear map P : X → X is a projection if P 2 = P , and it is straightforward to show that
X = RP ⊕NP . We showed that these two spaces are orthogonal complements iff P is self-adjoint,
in which case it is called an orthogonal projection.

A big idea from last week is the if H : X → X is self-adjoint, then it is diagonalizable by an
orthogonal matrix, which means that if you “tilt your head the right way,” the linear map behave
like 2 0 0

0 3 0
0 0 4

 ,
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which is easy to visualize.
If H is self-adjoint, then X = Eλ1 ⊕ · · · ⊕ Eλk into orthogonal eigenspaces. If Pi : X → X is

the projection onto the ith eigenspace, then

I = P1 + · · ·+ Pk, and H = λ1P1 + · · ·+ λkPk.

For any function f(t) defined on the eigenvalues, it is well-founded to define f(H) := f(λ1)P1 +
· · ·+ f(λk)Pk.

In general, if A is self-adjoint, then the equation f(x) = xTAx is a quadratic form. The
Rayleigh quotient is the function RH(x) = (x,Hx)/(x, x). The critical points are the eigenvectors,
and RH(v) = λ, for Hv = λv. If the eigenvalues are λ1 ≤ · · · ≤ λn, then

λk = min
dimS=k

{
max
x∈S\0

RH(x)

}
.

We explored this intuitively with the diagonal matrix with eigenvalues 2, 3, and 4.

Fri. August 1. We spent the day talking about the singular value decomposition (SVD) of a
linear map A : X1 → X2. In particular, this is A = UDV ∗, and it can be derived by computing

A∗A = (UDV ∗)(V D∗U∗), AA∗ = (V D∗U∗)(UDV ∗).

That is, the columns U and V are the orthonormal eigenvectors of A∗A and AA∗, respectively,
and D is the “diagonal” matrix with entries

√
σ1, . . . ,

√
σr, the square roots of the diagonal entries

of D∗D. We did an example of this, for the matrix A =

[
1 3
2 6

]
, and used our knowledge of the

“four fundamental subspaces” to do it without actually computing A∗A and AA∗, though we did
do that to check our work.

Finally, we finished with a discussion of 2-sided, left-, right-, and pseudo-inverses, for a linear
map A : Kn → Km. With each one, we drew a “cartoon” of the “four fundamental subspaces” to
understand it better.

(1) 2-sided inverse (r = n = m). Ax = b has a unique solution. A∗A and AA∗ are both
invertible.

(2) left inverse (r = n < m). Full column rank. NA = NA∗A = {0}, so Ax = b has 0 or 1
solutions. A∗A is invertible, and so

(A∗A)−1A∗︸ ︷︷ ︸
A−1

left

A = I, AA−1left = A(A∗A)−1A∗ = ProjC(A) .

(3) right inverse (r = m < n). Full row rank. NA = NAA∗ = {0}, so Ax = b has infinitely
many solutions. AA∗ is invertible, and so

AA∗(AA∗)−1︸ ︷︷ ︸
A−1

right

= I, A−1rightA = A∗(AA∗)−1A = ProjC(A∗) .

(4) pseudo-inverse (any linear map). A linear map A† : Km → Kn so that

A†A =

[
Ir 0
0 0

]
n×n

, AA† =

[
Ir 0
0 0

]
m×m

.

We finished the class with applications from PDEs and Fourier series, to illustrate self-adjoint
maps. Specifically, we solved the following BVP for the heat equation: ut = c2uxx, u(0, t) =
u(π, t) = 0, u(x, 0) = h(x). By separating variables, we got two ODEs that were “eigenvalue
equations.” This BVP is a special case of a Sturm-Liouville problem, which has the form Lv = λv
for a self-adjoint differential operator L. We gave several other examples, by changing the boundary
conditions, initial condition, and the PDE. The general solution is an infinite sum of eigenfunctions.
In linear algebra terms, this is just linearity. In physics terms, it is superposition.


