Two nonabelian groups of order 8




Left vs. right cosets

Definition
Let H < G. Given x € G, its left coset xH and right coset Hx are:
xH = {xh| h e H}, Hx = {hx | h € H}.
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Left vs. right cosets
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Quotients

Key idea
The quotient of G by a subgroup H exists when the (left) cosets of H form a group. J

Here is the quotient of G = Qg by the subgroup H = (—1) = {1, —1}.
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Quotients
Denote the set of left cosets of H in G by

G/H:={xH|x € G}.

Key idea
The quotient of G by a subgroup H exists when the (left) cosets of H form a group.

This is well-defined precisely when H is normal. (Left and right cosets coincide.)

Qs/N
Cluster the Collapse cosets Elements of the quotient
left cosets of N into single nodes are cosets of N
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Quotients
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Quotients

Let’s revisit N = ((12)(34), (13)(24)) and H = {(123)) of As.
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When and why the quotient process works

In the following: the right coset Hg are the nodes at the “arrowtips”.

collapse
collapse
cosets cosets >
Elements in the right coset Hg not a valid Elements in Hg valid Cayley
are in multiple left cosets Cayley graph all stay in gH graph

Key idea
If H is normal subgroup of G, then the quotient group G/H exists.

If H is not normal, then following the blue arrows from H is ambiguous.

In other words, it depends on our where we start within H.
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What does it mean to “multiply” two cosets?

Quotient theorem
If H< G, the set of cosets G/H forms a group, with binary operation

aH - bH := abH.

It is clear that G/H is closed under this operation.
We have to show that this operation is well-defined.

By that, we mean that it does not depend on our choice of coset representative.

collapse
collapse
—_—
cosets cosets .ﬁ
our destination depends the quotient process destination doesn't depend quotient process
on where in H we start does not yield a group on where we start in H succeeds
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A familiar example
Consider the subgroup H = (12) = 12Z of G = Z.
The cosets of H are the congruence classes modulo 12.
Since this group is additive, the condition aH - bH becomes (a+ H)+ (b+ H) = a+ b+ H:

“(the coset containing a) + (the coset containing b) = the coset containing a+b.”
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Visualizing the FHT via Cayley graphs
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A picture of the isomorphism ¢v: Z/(12) — Z12
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The correspondence theorem: subgroups of quotients
Compare G = Dicg with the quotient by N = (r3).

We know the subgroups structure of G/N = {N, rN, r2N, sN, rsN, r2sN} =~ Ds.

“The subgroups of the quotient G/N are the quotients of the subgroups that contain N."

“shoeboxes; lids on" “shoeboxes; lids off’ “shoes out of the box'

2 Bk s 2 Pk s 2N r2sN

rort s s r s s N rshN

1 B s s I s 3 N sN
n<G (/N < G/N () < G/N
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The correspondence theorem: subgroups of quotients
Here is the subgroup lattice of G = Dicg, and of the quotient G/N, where N = (r3).
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“The subgroups of the quotient G/N are the quotients of the subgroups that contain N."

“shoes out of the box’ “shoeboxes; lids off’ “shoeboxes; lids on”

25 s s 2k s r2N r2sN
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1 P s s Pl s s N sN
(s) <G (s)/N< G/N (sN) < G/N
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The fraction theorem: quotients of quotients

Fraction theorem
Given a chain N < H < G of normal subgroups of G,

(G/N)/(H/N) = G/H.
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The fraction theorem: quotients of quotients

Let’s continue our example of the semiabelian group G = SAg = (r, s).

G/N = (rN,sN) =2 C4 x & G/H = (rH,sH) = Vi
H/N = (r’N) = {N,r’N} =~ &  (G/N)/(H/N)= G/H

rN(r2N) rsN(r2N) rH rsH
(G/N)/(H/N) G/H
(rN) sN(r2N) H sH
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A generalization of the FHT

Theorem (exercise)

Every homomorphism ¢: G — H can be factored as a quotient and embedding:
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A generalization of the FHT
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The free group on 2 generators
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D3 as a quotient of F»

Ds={(rf|rP=r2=rfrf=1) 0>

C
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