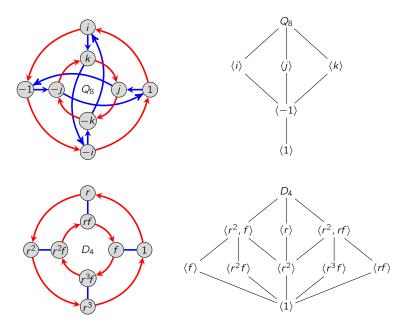
Two nonabelian groups of order 8



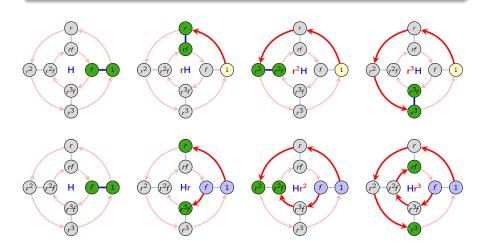
Left vs. right cosets

Definition

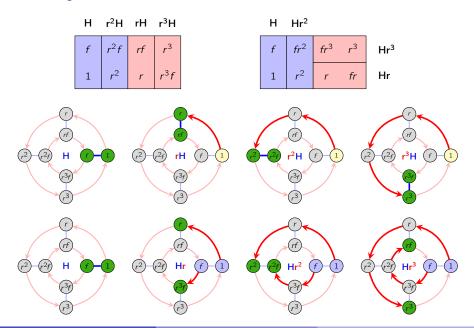
Let $H \leq G$. Given $x \in G$, its left coset xH and right coset Hx are:

$$xH = \{xh \mid h \in H\}, \qquad Hx = \{hx \mid h \in H\}.$$

$$Hx = \{hx \mid h \in H\}.$$



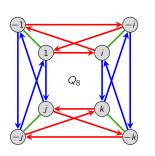
Left vs. right cosets



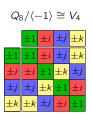
Key idea

The quotient of G by a subgroup H exists when the (left) cosets of H form a group.

Here is the quotient of $G = Q_8$ by the subgroup $H = \langle -1 \rangle = \{1, -1\}$.



	1	-1	i	-i	j	<u></u>	k	-k
1	1	-1	i	-i	j	-ј	k	-k
-1	-1	1	- <i>i</i>	i	-ј	j	-k	k
i	i	-i	-1	1	k	-k	-ј	j
-i	-i	i	1	-1	-k	k	j	-j
j	j	– ј	-k	k	-1	1	i	-i
<u></u> -ј	- ј	j	k	-k	1	-1	- <i>i</i>	i
k	k	-k	j	-ј	-i	i	-1	1
-k	-k	k	-ј	j	i	-i	1	-1



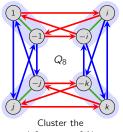
Denote the set of left cosets of H in G by

$$G/H := \{xH \mid x \in G\}.$$

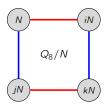
Key idea

The quotient of G by a subgroup H exists when the (left) cosets of H form a group.

This is well-defined precisely when H is normal. (Left and right cosets coincide.)



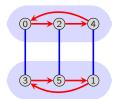
left cosets of N



Collapse cosets into single nodes

	N	iN	jΝ	kN
N	N	iN	jΝ	kN
iN	iN	N	kN	jΝ
jΝ	jΝ	kN	N	iN
kN	kN	jΝ	iN	N

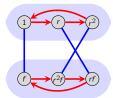
Elements of the quotient are cosets of N



Cluster the left cosets of $H \leq \mathbb{Z}_6$

Collapse cosets into single nodes

Elements of the quotient are cosets of *H*

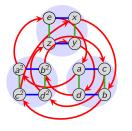


Cluster the left cosets of $N \le D_3$

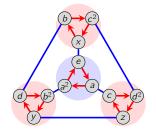
Collapse cosets into single nodes

Elements of the quotient are cosets of N

Let's revisit $N = \langle (12)(34), (13)(24) \rangle$ and $H = \langle (123) \rangle$ of A_4 .

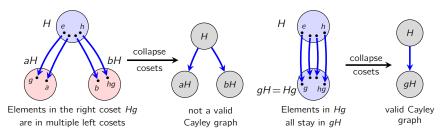


	Н	aН	a ² H
Н	Н	aН	a ² H
аН	аН	a ² H	Н
a ² H	a ² H	Н	аН



When and why the quotient process works

In the following: the right coset Hg are the nodes at the "arrowtips".



Key idea

If H is normal subgroup of G, then the quotient group G/H exists.

If H is not normal, then following the blue arrows from H is ambiguous.

In other words, it depends on our where we start within H.

What does it mean to "multiply" two cosets?

Quotient theorem

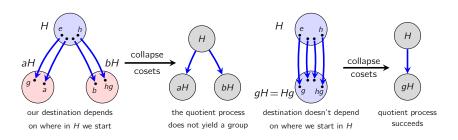
If $H \subseteq G$, the set of cosets G/H forms a group, with binary operation

$$aH \cdot bH := abH$$
.

It is clear that G/H is closed under this operation.

We have to show that this operation is well-defined.

By that, we mean that it does not depend on our choice of coset representative.

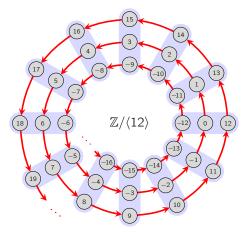


A familiar example

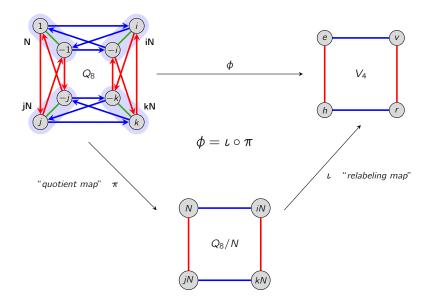
Consider the subgroup $H = \langle 12 \rangle = 12\mathbb{Z}$ of $G = \mathbb{Z}$.

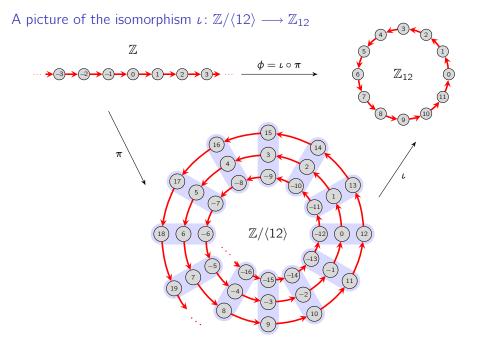
The cosets of H are the congruence classes modulo 12.

Since this group is additive, the condition $aH \cdot bH$ becomes (a+H) + (b+H) = a+b+H: "(the coset containing a) + (the coset containing b) = the coset containing a+b."



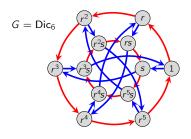
Visualizing the FHT via Cayley graphs

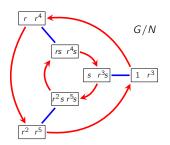




The correspondence theorem: subgroups of quotients

Compare $G = Dic_6$ with the quotient by $N = \langle r^3 \rangle$.





We know the subgroups structure of $G/N = \{N, rN, r^2N, sN, rsN, r^2sN\} \cong D_3$.

"The subgroups of the quotient G/N are the quotients of the subgroups that contain N."

"shoeboxes: lids on"

	r^2	r ⁵	r ² s	r^5s
	r	r^4	rs	r^4s
	1	r ³	s	r^3s
$\langle r \rangle \leq G$				

"shoeboxes: lids off"

r ²	r ⁵	r ² s	r ⁵ s
r	r ⁴	rs	r ⁴ s
1	r ³	s	r ³ s
/r\/N < G/N			

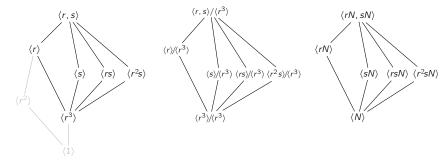
"shoes out of the box"

r ² N	r ² sN
rN	rsN
N	sN

 $\langle rN \rangle \leq G/N$

The correspondence theorem: subgroups of quotients

Here is the subgroup lattice of $G = Dic_6$, and of the quotient G/N, where $N = \langle r^3 \rangle$.



"The subgroups of the quotient G/N are the quotients of the subgroups that contain N."

r ²	r^5	r^2s	r^5s
r	r^4	rs	r^4s
1	r ³	s	r ³ s
	(s)	 ≤ <i>G</i>	

"shoeboxes: lids off"

r ²	r ⁵	r ² s	r ⁵ s	
r	r ⁴	rs	r ⁴ s	
1	r ³	s	r ³ s	
$\langle s \rangle / N \le G / N$				

"shoeboxes: lids on"

r ² N	r ² sN		
rN	rsN		
Ν	sN		
/-N/\ < C /N/			

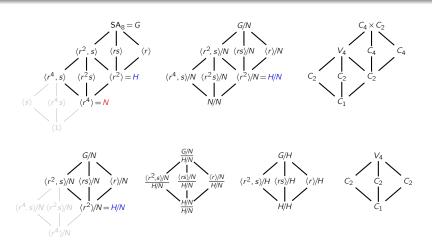
$$\langle sN \rangle < G/N$$

The fraction theorem: quotients of quotients

Fraction theorem

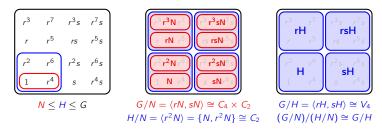
Given a chain $N \leq H \leq G$ of normal subgroups of G,

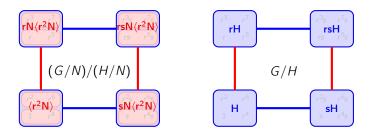
$$(G/N)/(H/N) \cong G/H.$$



The fraction theorem: quotients of quotients

Let's continue our example of the semiabelian group $G = SA_8 = \langle r, s \rangle$.

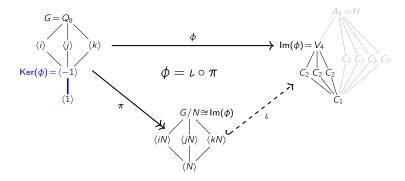




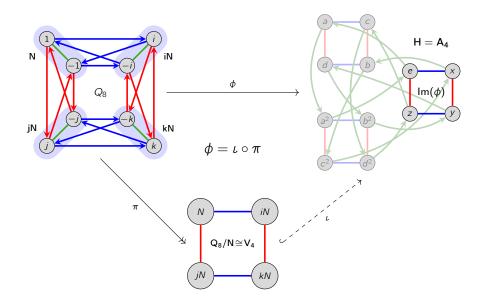
A generalization of the FHT

Theorem (exercise)

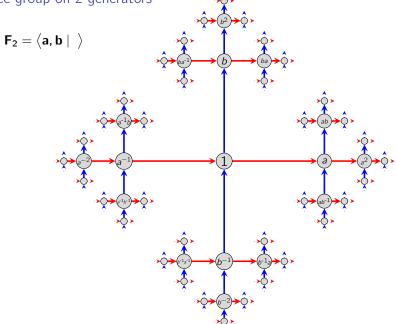
Every homomorphism $\phi \colon G \to H$ can be factored as a quotient and embedding:



A generalization of the FHT



The free group on 2 generators



D_3 as a quotient of F_2 $D_3 = \left\langle r, f \mid r^3 = r^2 = rfrf = 1 \right\rangle$

20 / 20