MTHSC 208 (Differential Equations) Dr. Matthew Macauley HW 15 Due Monday March 9th, 2009

(1) Find the general solution of $x^2y'' - xy' - 3y = 0$.

(2) Find the general solution of $x^2y'' - xy' + 5y = 0$.

- (3) Find the general solution of $x^2y'' 3xy' + 4y = 0$.
- (4) Consider the following ODE: y'' 2xy' + 10y = 0.
 - (a) Assume the solution has the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$. Plug y(x) back into the ODE and find the recurrence relation for a_{n+2} in terms of a_n . Write down the general solution of the ODE.
 - (b) Explicitly write out the coefficients a_n for $n \leq 9$, in terms of a_0 and a_1 . See the pattern? Write down the formula for a_n in terms of a_0 and a_1 .
 - (c) Find a basis for the solution space of the ODE (functions $y_0(x)$ and $y_1(x)$ such that the general solution is $y(x) = C_0 y_0(x) + C_1 y_1(x)$).
 - (d) Find a non-zero polynomial solution for this ODE. [*Hint*: Make a good choice for a_0 and a_1 .]
 - (e) Are there any other polynomial solutions, excluding scalar multiples of the one you found in (d)? Why or why not?
- (5) To solve the differential equation $y'' + x^2y'' 4xy' + 6y = 0$, assume that the solution has the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$.
 - (a) Plug y(x) back into the ODE and determine the recurrence relation for the coefficients of the power series.
 - (b) Explicitly compute a_n in terms of a_0 and a_1 for $n \leq 5$.
 - (c) Write down a basis for the solution space.
 - (d) How many distinct *polynomial* solutions are there to this ODE (i.e., up to scalar multiples)? Briefly justify your answer.
- (6) The differential equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + p(p+1)y = 0,$$

where p is a constant, is known as *Legendre's equation*. We will solve it by first assuming that the solution is a power series centered at 0.

- (a) Find the recursion formula for a_{n+2} in terms of a_n .
- (b) Use the recursion formula to determine a_n in terms of a_0 and a_1 , for $2 \le n \le 9$.
- (c) Find a nonzero polynomial solution to this ODE, in the case where p = 3.
- (d) Find a basis for the space of solutions to the differential equation:

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 12y = 0,$$

- (7) We will find the general solution of Airy's equation: y'' + xy = 0.
 - (a) Assume the solution is a power series. Find the recurrence relation of the coefficients of the power series. [*Hint*: When shifting the indices, one way is to let m = n 3, then factor out x^{n+1} and find a_{n+3} in terms of a_n . Alternatively, you can find a_{n+2} in terms of a_{n-1} .]

- (b) Show that $a_2 = 0$. [*Hint*: the two series for y'' and xy don't "start" at the same power of x, but for any solution, each term must be zero. (Why?)]
- (c) Find the particular solution when y(0) = 1, y'(0) = 0, as well as the particular solution when y(0) = 0, y'(0) = 1.