MTHSC 208 (Differential Equations) Dr. Matthew Macauley HW 18 Due Monday March 30th, 2009

- (1) For each of the following sets, determine if it is a vector space. If it is, give a basis. If it isn't, explain why not.
 - (a) The set of points in \mathbb{R}^3 with x = 0.
 - (b) The set of points in \mathbb{R}^2 with x = y.
 - (c) The set of points in \mathbb{R}^3 with x = y.
 - (d) The set of points in \mathbb{R}^3 with $z \ge 0$.
 - (e) The set of unit vectors in \mathbb{R}^2 .
 - (f) The set of polynomials of degree n.
 - (g) The set of polynomials of degree at most n.
 - (h) The set of polynomials of degree at most n, with only even-powers of x.
 - (i) The set of generalized power series of the form $\sum_{n=0}^{\infty} a_n x^{n-\frac{2}{3}}$.
 - (j) The set of 2π -periodic functions.
- (2) Complete the following sentences:
 - (a) Two non-zero vectors v_1 and v_2 are a basis for \mathbb{R}^2 if and only if...
 - (b) Three non-zero vectors v_1, v_2 , and v_3 are a basis for \mathbb{R}^3 if and only if...
- (3) Let X be a vector space over \mathbb{C} (i.e., the contants are complex numbers, instead of just real numbers). If $\{v_1, v_2\}$ is a basis of X, then by definition, every vector v can be written uniquely as $v = C_1 v_1 + C_2 v_2$.

 - (a) Is the set $\{v_1 + v_2, 3v_1 2v_2\}$ also a basis of X? (b) Is the set $\{\frac{1}{2}v_1 + \frac{1}{2}v_2, \frac{1}{2i}v_1 \frac{1}{2i}v_2\}$ a basis of X? (c) Consider the ODE y'' + 4y = 0. If we assume that $y(t) = e^{rt}$, then we get that $r = \pm 2i$. Therefore, the general solution is $y(t) = C_1 e^{2it} + C_2 e^{-2it}$, i.e., $\{e^{2it}, e^{-2it}\}$ is a basis for the solution space. Use (b), and Euler's equation $(e^{i\theta} = \cos\theta + i\sin\theta)$ to find a basis for the solution space involving sines and cosines, and write the general solution using sines and cosines.