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(1) Let X be a vector space over C (i.e., the contants are complex numbers, instead of just
real numbers). If {v1, v2} is a basis of X, then by definition, every vector v can be written
uniquely as v = C1v1 + C2v2.
(a) Is the set { 1

2v1 + 1
2v2,

1
2v1 − 1

2v2} a basis of X?
(b) Consider the ODE y′′ = 4y. We know that the general solution is y(t) = C1e

2t +
C2e

−2t, i.e., {e2t, e−2t} is a basis for the solution space. Use (b), and the fact that
ex = coshx + sinhx to find a basis for the solution space involving hyperbolic sines
and cosines, and write the general solution using these functions.

(2) We will find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies the
following conditions:

∂u

∂t
= 9

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x, 0) = sin x + 3 sin 2x− 5 sin 7x.

(a) Assume that u(x, t) = f(x)g(t). Plug this back into the PDE and separate variables
to get the eigenvalue problem (set equal to a constant λ). Solve for g(t), f(x), and λ.

(b) Using your solution to (a), find the general solution to the PDE

∂u

∂t
= 9

∂2u

∂x2

subject to the Dirichlet boundary conditions:

u(0, t) = u(π, t) = 0 .

(c) Solve the initial value problem, i.e., find the particular solution u(x, t) that satisfies
u(x, 0) = sin x + 3 sin 2x− 5 sin 7x.

(d) What is the steady-state solution, i.e., lim
t→∞

u(x, t)?

(3) Find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies the following
conditions:

∂u

∂t
= 9

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x, 0) = x(π − x).

Note: The general solution will be exactly the same as in the previous problem. All you
need to do again is Part (c) and (d) for this new initial condition, u(x, 0) = x(π − x).
Additionally, sketch the bar and its initial heat distribution.

(4) We will find the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies the
following conditions:

∂u

∂t
=

∂2u

∂x2
, ux(0, t) = ux(π, t) = 0, u(x, 0) = 4 + 3 cos x + 8 cos 2x .

(a) Assume that u(x, t) = f(x)g(t). Plug this back into the PDE and separate variables
to get the eigenvalue problem (set equal to a constant λ). Solve for g(t), f(x), and λ.

(b) Using your solution to (a), find the general solution to the PDE

∂u

∂t
=

∂2u

∂x2

subject to the Neumann boundary conditions:

ux(0, t) = ux(π, t) = 0 .
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(c) Finally, solve the initial value problem, i.e., find the particular solution u(x, t) that
satisfies u(x, 0) = 4 + 3 cos x + 8 cos 2x.

(d) What is the steady-state solution?

(5) Let u(x, t) be the temperature of a bar of length 10, that is insulated so that no heat can
enter or leave. Suppose that initially, the temperature increases linearly from 70◦ at one
endpoint, to 80◦ at the other endpoint.
(a) Sketch the initial heat distribution on the bar, and express it as a function of x.
(b) Write down an initial value problem (a PDE with boundary and initial conditions)

to which u(x, t) is a solution (Let the constant from the heat equation be c2).
(c) What will the steady-state solution be?

(6) Consider the following PDE:

∂u

∂t
=

∂2u

∂x2
, u(0, t) = 0,

∂u

∂x
(π, t) = 0, u(x, 0) = 3 sin

5x

2
.

(a) Describe a physical situation that this models. Be sure to describe the impact of both
boundary conditions and the initial condition.

(b) Assume that the solution is of the form u(x, t) = f(x)g(t), and plug this into the PDE
to get the eigenvalue problem (set equal to a constant λ). From this, write down two
ODEs; one for f and one for g. Include boundary conditions for f .

(c) Solve the ODEs from the previous part for f and g. You may assume that λ = −ω2,
(i.e., that λ < 0). Determine ω (be sure to show your work for this part!).

(d) Write down the general solution for u(x, t), which solve the mixed boundary condi-
tions:

u(0, t) = ux(π, t) = 0 .

(e) Find the particular solution for u(x, t) satisfying the initial condition u(x, 0) =
3 sin(5x/2).

(f) What is the steady-state solution?


