Week II Summary:

- Solving ODE's with power series & generalized power series.

 Singular points: Consider \(y'' + P(x)y' + Q(x)y = 0 \).

 * \(x_0 \) is ordinary if "\(P(x_0) \) and \(Q(x_0) \) are defined" (technically, "real analytic").
 * \(x_0 \) is singular, otherwise. In this case,
 - \(x_0 \) is regular if \((x-x_0)P(x)\) and \((x-x_0)^2Q(x)\) are real analytic.
 - \(x_0 \) is irregular, otherwise.

 Theorem of Frobenius:

 * If \(x_0 \) is an ordinary point, then there is a power series solution
 \[y(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n. \]

 * If \(x_0 \) is a regular singular point, then there is a generalized
 power series solution
 \[y(x) = (x-x_0)^{\nu} \sum_{n=0}^{\infty} a_n (x-x_0)^n. \]
 Moreover, the radius of convergence is \(R = \min \{ R_0, R_0 \} \).

- Basic linear algebra:

 * A vector space \(X \) is a set closed under addition & scalar mul.
 * A basis for \(X \) is a min'l set of vectors that spans \(X \).
 * The dot product allows us to project vectors onto unit vectors,
 and measure lengths & angles.
Let's extend the notion of a dot product in \(\mathbb{R}^n \) to an arbitrary vector space (we call it an "inner product").

Def: Let \(X \) be a vector space. An inner product is a function (denoted, e.g., \(\langle u, v \rangle \)) such that:

(i) \(\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \) (additive)

(ii) \(\langle cu, v \rangle = c \langle u, v \rangle \) (constants pull out)

(iii) \(\langle v, w \rangle = \langle w, v \rangle \) (symmetric)

(iv) \(\langle v, v \rangle \geq 0 \) (non-negative)

(v) \(\langle v, v \rangle = 0 \) iff \(v = 0 \)

Def: If \(\langle v, w \rangle = 0 \), then \(v \) \& \(w \) are **orthogonal** (perpendicular).

- A set of vectors \(\{v_1, \ldots, v_n\} \) is **orthonormal** if they are all unit-length and mutually orthogonal (i.e., \(v_i \cdot v_j = 0 \) \(i \neq j \)).

Big Idea: Orthonormal bases are really nice!

Ex: Consider \(\mathbb{R}^2 \), let \(\vec{v} = (4, 3, 2) \),

\[
\vec{v} = (4, 3, 2) = (\vec{v} \cdot \vec{e}_1, \; \vec{v} \cdot \vec{e}_2, \; \vec{v} \cdot \vec{e}_3)
\]

This works because with the dot product, \(\{\vec{e}_1, \vec{e}_2, \vec{e}_3\} \) is an orthonormal basis for \(\mathbb{R}^3 \):

- Unit length: \(\|e_i\| = 1 \), i.e., \(\langle e_i, e_i \rangle = 1 \)
- Orthogonality (perpendicular): \(\langle e_i, e_j \rangle = 0 \) if \(i \neq j \)

\[
\vec{v} = (4, 3) = 4\vec{e}_1 + 3\vec{e}_2
\]
Now, we'll do the same thing in $\text{Per}_{2\pi}$, the space of 2π-periodic functions.

Define an inner product on $\text{Per}_{2\pi}$ as follows:

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) g(t) \, dt$$

Fact 1: $B = \{ \frac{1}{2}, \cos t, \cos 2t, \ldots, \sin t, \sin 2t, \ldots \}$ is a basis of $\text{Per}_{2\pi}$.

Fact 2: This inner product makes B an orthonormal basis of $\text{Per}_{2\pi}$!

i.e.,

$$\langle \cos nt, \cos mt \rangle := \frac{1}{\pi} \int_{-\pi}^{\pi} \cos nt \cos mt \, dt = \begin{cases} 1 & n=m \\ 0 & n \neq m \end{cases},$$

$$\langle \sin nt, \sin mt \rangle := \frac{1}{\pi} \int_{-\pi}^{\pi} \cos nt \sin mt \, dt = \begin{cases} 1 & n=m \\ 0 & n \neq m \end{cases}.$$

$$\langle \cos nt, \sin mt \rangle := \frac{1}{\pi} \int_{-\pi}^{\pi} \cos nt \sin mt \, dt = 0.$$

Big idea: Since B is a basis, every 2π-periodic function can be written as

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt.$$

Since B is orthonormal, we can use our inner product to decompose vectors into components by projection.

Compare:

In \mathbb{R}^2, $(4,3) \cdot (1,0) = 4$ "magnitude in the x-direction"

In $\text{Per}_{2\pi}$, $\langle f, \cos 2t \rangle = a_2$ "magnitude in the $\cos 2t$-direction"

Thus, we have a formula for the coefficients a_n and b_n:

$$a_n = \langle f(t), \cos nt \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt,$$

$$b_n = \langle f(t), \sin nt \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt.$$
\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n \pi x}{L} + b_n \sin \frac{n \pi x}{L} \]

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} \, dx \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} \, dx \]

[Show Demo: www.falstad.com/fourier]

Example: Square wave:

\[f(t) = \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nt + b_n \sin nt \]

\[a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \, dt = \frac{1}{\pi} \int_{-\pi}^{0} 1 \, dt + \frac{1}{\pi} \int_{0}^{\pi} 1 \, dt = 0. \]

\[a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt = \frac{1}{\pi} \int_{-\pi}^{0} -1 \cos nt \, dt + \frac{1}{\pi} \int_{0}^{\pi} 1 \cos nt \, dt \]

\[= \frac{1}{\pi} \left. \sin nt \right|_{-\pi}^{0} + \frac{1}{\pi} \left. \sin nt \right|_{0}^{\pi} = 0. \]

\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt = \frac{1}{\pi} \int_{-\pi}^{0} -1 \sin nt \, dt + \frac{1}{\pi} \int_{0}^{\pi} 1 \sin nt \, dt \]

\[= \frac{1}{\pi} \left. \cos nt \right|_{-\pi}^{0} - \frac{1}{\pi} \left. \cos nt \right|_{0}^{\pi} = \frac{1}{\pi} (1 - \cos n \pi) - \frac{1}{\pi} (\cos n \pi - 1) \]

\[= \frac{2}{\pi} (1 - \cos n \pi). \]

\[a_n = \begin{cases} 0 & n \text{ even} \\ \frac{4}{n \pi} & n \text{ odd} \end{cases} \]

Note: \(\cos n \pi = (-1)^n \)
\[f(t) = \frac{4}{\pi} \sin t + \frac{4}{3 \pi} \sin 3t + \frac{4}{5 \pi} \sin 5t + \frac{4}{7 \pi} \sin 7t + \ldots \]

Note: All cosine terms, i.e., even sine terms, are zero. (Why?)

\[\begin{array}{c}
\cos t \\
\sin 2t \\
\sin t \\
distinct waves
\end{array} \]

This "looks more like a sine than a cosine wave."

Ex 2: Sawtooth wave

\[f(t) = \begin{cases} 0 & \text{for } t < 0 \\ t & \text{for } 0 \leq t \leq \pi \\ \pi & \text{for } t > \pi \end{cases} \]

\[f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt. \]

\[a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} t \, dt = 0. \quad \text{(By symmetry)} \]

\[a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} t \cos nt \, dt \]

\[= \frac{1}{\pi} \left[\frac{1}{n} t \sin nt \bigg|_{-\pi}^{\pi} - \frac{1}{n} \int_{-\pi}^{\pi} \sin nt \, dt \right] \]

\[= \frac{1}{n \pi} \int_{-\pi}^{\pi} \sin nt = \frac{1}{n \pi} \cos nt \bigg|_{-\pi}^{\pi} = \frac{1}{n^2 \pi} \left[\cos n\pi t - \cos(-n\pi t) \right] \]

\[= \frac{1}{n^2 \pi} \left[\cos n\pi t - \cos n\pi t \right] = 0. \]

\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} t \sin nt \, dt \]

\[= \frac{1}{\pi} \left[\frac{-1}{n} t \cos nt \bigg|_{-\pi}^{\pi} + \frac{1}{n} \int_{-\pi}^{\pi} \cos nt \, dt \right] \]

\[= \frac{1}{\pi n} \left[(\frac{-\pi}{n} \cos n\pi) - (\frac{\pi}{n} \cos n\pi) + \frac{1}{n^2} \sin nt \bigg|_{-\pi}^{\pi} \right] \]
\[
= \frac{1}{n} \left[-\frac{2\pi}{n} \cos(n\pi) \right] = -\frac{2}{n} \cos(n\pi) = -\frac{2}{n} (-1)^n = \frac{2}{n} (-1)^{n+1} = \begin{cases}
-\frac{2}{n} & \text{if } n \text{ even} \\
\frac{2}{n} & \text{if } n \text{ odd}
\end{cases}
\]

Thus, \(f(t) = 2 \sin t - \frac{2}{3} \sin 3t + \frac{2}{5} \sin 5t + \ldots \)

\[= 2 \sin t - \frac{2}{3} \sin 3t + \frac{2}{5} \sin 5t + \ldots \]

Think: How does this relate to music, sound waves, or harmonics?

Exploiting Symmetry

Why are many of the \(a_n \) 's and \(b_n \) 's zero?

Def:
- \(f(t) \) is an **even function** if \(f(t) = f(-t) \)
- \(f(t) \) is an **odd function** if \(f(t) = -f(-t) \).

Graphically:

- \(f(t) \) even \(\iff \) symmetric about the \(y \)-axis.
- \(f(t) \) odd \(\iff \) symmetric about the origin.

Why we care:
- If \(f(t) \) is even, then \(\int_{-L}^{L} f(t) \, dt = 2 \int_{0}^{L} f(t) \, dt \) (look at the area under the curve to see why!)
- If \(f(t) \) is odd, then \(\int_{-L}^{L} f(t) \, dt = 0 \)
Facts:
- If f and g are even, then $f(t)g(t)$ is even.
- If f and g are odd, then $f(t)g(t)$ is even.
- If f is even and g is odd, then $f(t)g(t)$ is odd.

Examples:
- Even Functions: 8, t^2, $3t^2 + t^2 - 5$, $|t|$,

 $\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \frac{t^6}{6!} + \cdots = \frac{e^{it} + e^{-it}}{2}$

 $\cosh t = 1 + \frac{t^2}{2!} + \frac{t^4}{4!} + \frac{t^6}{6!} + \cdots = \frac{e^t + e^{-t}}{2}$

- Odd Functions: $2t$, $8t^3 - 5t$,

 $\sin t = 1 - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \cdots = \frac{e^{it} - e^{-it}}{2}$

 $\sinh t = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \frac{t^7}{7!} + \cdots = \frac{e^t - e^{-t}}{2}$

- Neither: $t^2 - 3t + 2$, $e^t = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \cdots = \cosh t + \sinh t$.

Note:
- If $F(t)$ is even, then $F(t)\cos nt$ is even $\Rightarrow a_n = \frac{2}{L}\int_0^L F(t)\cos\left(\frac{nt\pi}{L}\right)dt$

 and $F(t)\sin nt$ is odd $\Rightarrow b_n = 0$ (all n)

- If $F(t)$ is odd, then $F(t)\cos nt$ is odd $\Rightarrow a_n = 0$ (all n)

 and $F(t)\sin nt$ is even $\Rightarrow b_n = \frac{2}{L}\int_0^L F(t)\sin\left(\frac{nt\pi}{L}\right)dt$
Fourier sine & cosine series

Idea: Consider some function defined on \([0, L]\)

Find "the Fourier series of \(f(t)\)."

First, we need to make \(f(t)\) periodic.

A naïve extension

The even extension of \(f(t)\)

The odd extension of \(f(t)\)

- Fourier series of the even extension:
 \[
 a_n = \frac{2}{L} \int_0^L f(t) \cos \left(\frac{n \pi t}{L} \right) \, dt
 \]
 \[
 b_n = 0
 \]
 (called the Fourier cosine series of \(f(t)\))

- Fourier series of the odd extension:
 \[
 a_n = 0
 \]
 \[
 b_n = \frac{2}{L} \int_0^L f(t) \sin \left(\frac{n \pi t}{L} \right) \, dt
 \]

Example: \(f(t) = t\) on \([0, L]\)

Compute the Fourier sine & cosine series.

Odd extension:

\[f(t) \]

Fourier sine series:

\[
 f(t) = \sum_{n=1}^{\infty} b_n \sin nt
\]

\[
 b_n = \begin{cases}
 -\frac{2}{n\pi} & n \text{ even} \\
 \frac{2}{n\pi} & n \text{ odd}
\end{cases}
\]

(we already did this).
Even extension

Fourier cosine series: \(f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt \)

\[a_0 = \frac{2}{\pi} \int_{0}^{\pi} t \cos 0 \, dt = \frac{t^2}{\pi} \bigg|_{0}^{\pi} = \pi \]

\[a_n = \frac{2}{\pi} \int_{0}^{\pi} t \cos nt \, dt = \frac{2}{\pi} \left[\frac{t}{n} \sin nt \bigg|_{0}^{\pi} - \frac{1}{n} \int_{0}^{\pi} \sin nt \, dt \right] \]

Let \(u = t \) \quad \(v = \frac{1}{n} \sin nt \) \quad \(du = dt \) \quad \(dv = \cos nt \, dt \)

\[= \frac{2}{\pi n^2} \cos nt \bigg|_{0}^{\pi} = \frac{2}{\pi n^2} \left[\cos n\pi - 1 \right] \]

\[= \frac{2}{\pi n^2} \left[(-1)^n - 1 \right] = \begin{cases} 0 & n \text{ even} \\ \frac{-4}{\pi n^2} & n \text{ odd} \end{cases} \]

\[f(t) = \frac{\pi}{2} - \frac{4}{\pi} \cos t - \frac{4}{9\pi} \cos 3t - \frac{4}{25\pi} \cos 5t - \frac{4}{49\pi} \cos 7t - \ldots \]

Example: \(f(t) = \begin{cases} t & 0 \leq t < \frac{\pi}{2} \\ \pi - t & \frac{\pi}{2} \leq t < \pi \end{cases} \)

Compute the Fourier sine series.

Observe the symmetry about the line \(t = \frac{\pi}{2} \):

\(\sin t \) \quad \(\sin 2t \) \quad \(\sin 3t \) \quad \(\sin 4t \)

\(\sin nt \) has "even symmetry about \(t = \frac{\pi}{2} \)" if \(n \) is odd,\nand "odd symmetry about \(t = \frac{\pi}{2} \)" if \(n \) is even.
Since \(f(t) \) has "even symmetry about \(t = \frac{\pi}{2} \), \(b_n = 0 \) for all even \(n \),
and when \(n \) is odd, \(f(t) \sin nt \) has even symmetry about \(t = \frac{\pi}{2} \),
i.e., \(b_n = \frac{2}{\pi} \int_{0}^{\pi/2} f(t) \sin nt \; dt = \frac{4}{\pi} \int_{0}^{\pi/2} f(t) \sin nt \; dt \)

\[
= \frac{4}{\pi} \int_{0}^{\pi/2} t \sin nt \; dt = \frac{4}{\pi} \left[\frac{t}{n} \cos nt \right]_{0}^{\pi/2} + \int_{0}^{\pi/2} \frac{1}{n} \cos nt \; dt \\
= \frac{4}{\pi} \left[\frac{\pi}{2n} \cos \left(\frac{\pi n}{2} \right) - 0 + \frac{1}{n^2} \sin nt \right]_{0}^{\pi/2} \quad \text{(since \(n \) is odd)} \\
= \frac{4}{\pi} \left[\frac{1}{n^2} \sin \left(\frac{\pi n}{2} \right) \right] \quad \text{Note:} \quad \sin \frac{\pi n}{2} = \begin{cases} 0 & n = 4k \\ 1 & n = 4k+1 \\ 0 & n = 4k+2 \\ -1 & n = 4k+3 \end{cases}
\]

Thus, \(b_n = \begin{cases} \\
0 & n = 4k \\
\frac{4}{n^2} \pi & n = 4k+1 \\
0 & n = 4k+2 \\
-\frac{4}{n^2} \pi & n = 4k+3 \\
\end{cases} \)

So, \(f(t) = \frac{4}{\pi} \sin t - \frac{4}{9\pi} \sin 3t + \frac{4}{25\pi} \sin 5t - \frac{4}{49\pi} \sin 7t + \cdots \)

Complex form of the Fourier series

Fact 1: \(\mathcal{B}_1 = \left\{ \frac{1}{\sqrt{2}}, \cos t, \cos 2t, \cos 3t, \ldots \right\} \) is a basis for \(\operatorname{Per}_{2\pi}, \)

and is orthonormal if \(\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) g(t) \; dt \)

Fact 2: \(\mathcal{B}_2 = \left\{ 1, e^{-it}, e^{-2it}, e^{-3it}, \ldots \right\} \) is also a basis,

and is orthonormal if \(\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) g(t) \; dt \).

Therefore, if \(f(t) \) is \(2\pi \)-periodic, then

\[
f(t) = \sum_{n=-\infty}^{\infty} c_n e^{int} = c_0 + \sum_{n=1}^{\infty} \left(c_n e^{int} + c_{-n} e^{-int} \right) = c_0 + \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} \; dt,
\]

\[
c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{int} \; dt,
\]
This is the complex form of the Fourier series of f(t).

Recall: \[\cos nt = \frac{1}{2}(e^{int} + e^{-int}), \quad \sin nt = \frac{1}{2i}(e^{int} - e^{-int})\]

\[e^{int} = \cos nt + i \sin nt\]

Therefore, \[C_n = \frac{a_n - ib_n}{2}, \quad C_{-n} = \frac{a_n + ib_n}{2}\]

and \[a_n = C_n + C_{-n}, \quad b_n = i(C_n - C_{-n})\]

Note: \(C_0\) is the constant term in the complex form of \(f(t)\).

\(a_0 = 2C_0 \Rightarrow \frac{a_0}{2}\) is the constant term in the real form.