4. Galois Theory of Polynomials

Recall: If $f(x) \in F[x]$ and K is the splitting field over F, then the Galois group of $f(x)$ over F is $G := \text{Gal}(K/F)$.

G acts faithfully on the set S of roots of $f(x)$, i.e., $G \to S_n$ (where $|S| = n$).

Exercise. If $f(x)$ is irreducible, then this action is transitive.
(This follows immediately from Prop 1.9: $\exists \phi: F(a) \to F(b)$...).

Def: A simple radical extension of F is a field $K = F(a)$, where $a^\ell \in F$ for some $n \in \mathbb{N}$, i.e., a is a root of $x^\ell - b \in F[x]$.

Example: If char $F \neq 2$ and $[K:F] = 2$, then K/F is a simple radical extension (complete the square).

Consider $f(x) = x^2 - 1 \in F[x]$, let K be the splitting field.

If char $F = p > 0$, suppose $p + n$ (so $f'(x) \neq 0$, i.e., $(f(x), f'(x)) = 1$).

Prop 3.2 \Rightarrow $f(x)$ has n distinct roots, called the roots of unity.

The nth roots of unity form a multiplicative subgroup of $K \setminus \{0\}$.

By Prop 3.7, it is cyclic.

The generators are the primitive nth roots of unity.

Note: There are $\phi(n)$ primitive roots of unity, where ϕ is Euler's totient function: $\phi(n) = |\{0 < k < n : (n,k) = 1\}|$.
Remark: if \(w \) is a primitive \(n^{th} \) root of unity, then
* \(1, w, w^2, \ldots, w^{n-1} \) are all the \(n^{th} \) roots of unity
* \(K = F(w) \), a simple radical extension
* \(1 + w + w^2 + \ldots + w^{n-1} = 0 \) (actually \(w \) need not be primitive).

Prop 4.1: (a) If \(\text{char } F = p \| n \), then the Galois group of \(x^{n-1} \in F[x] \) is abelian.

(b) Moreover, if \(F = \mathbb{Q} \), the Galois group \(x^{n-1} \in F[x] \) is isomorphic to the multiplicative group \((\mathbb{Z}/n\mathbb{Z})^\times \).

PF: (a) Take \(G = \text{Gal}(F(w)/F) \), \(w \) is a primitive \(n^{th} \) root of unity.
If \(\phi, \theta \in G \), then \(\phi(w) \) and \(\theta(w) \) are roots of \(F(x) \).
Therefore, \(\phi(w)^i = w^i \), \(\theta(w)^j = w^j \) for some \(i, j \).
Thus, \(\phi \theta(w) = w^{ij} = \theta \phi(w) \).
Since \(F(w) \) is simple, every \(\phi \in G \) is determined by \(\phi(w) \),
so \(\phi \theta = \theta \phi \implies G \) is abelian. \(\checkmark \)

(b) Check that \((\mathbb{Z}/n\mathbb{Z})^\times \longrightarrow \text{Gal}(\mathbb{Q}(w)/\mathbb{Q}) \)
\[a \pmod{n} \longrightarrow \Gamma_a \text{ where } \Gamma_a(w) = w^a \]
is an isomorphism (Easy exercise). \(\checkmark \)

Def: The polynomial \(\Phi_n(x) = \prod_{i=1}^{\phi(n)} (x - w_i) \) where \(w_1, \ldots, w_{\phi(n)} \) are the primitive roots of unity, is the \(n^{th} \) cyclotomic polynomial.
Remark: If \(\eta \) is a root of \(f(x) = x^n - 1 \), then \(\eta \) is a primitive \(d^{th} \) root of unity, where \(|\eta| = d \) in \(K \setminus \{0, 1\} \), so \(d \mid n \) (Lagrange). Therefore, \(x^n - 1 = \prod_{d \mid n} \Phi_d(x) \), and so

\[
\Phi_n(x) = \frac{x^n - 1}{\prod \{ \Phi_d(x) : d \text{ proper divisor of } n \}}
\]

Example:

\[
\Phi_1(x) = x - 1 \\
\Phi_2(x) = \frac{x^2 - 1}{\Phi_1(x)} = \frac{x^2 - 1}{x - 1} = x + 1 \\
\Phi_3(x) = \frac{x^3 - 1}{\Phi_1(x)} = \frac{x^3 - 1}{x - 1} = x^2 + x + 1 \\
\Phi_4(x) = \frac{x^4 - 1}{\Phi_1(x) \Phi_2(x)} = \frac{x^4 - 1}{(x - 1)(x + 1)} = x^2 + 1 \\
\Phi_5(x) = \frac{x^5 - 1}{\Phi_1(x)} = \frac{x^5 - 1}{x - 1} = x^4 + x^3 + x^2 + x + 1 \\
\Phi_6(x) = \frac{x^6 - 1}{\Phi_1(x) \Phi_2(x) \Phi_3(x)} = x^2 - x + 1
\]

Fact: If \(f = \Phi_n \), then \(\Phi_n(x) \in \mathbb{Z}[x] \).

Thm 4.2: The cyclotomic polynomial \(\Phi_n(x) \) in \(\mathbb{Q}[x] \) is monic, irreducible, in \(\mathbb{Z}[x] \), and has degree \(\phi(n) \).

Proof: It is clear that \(\Phi_n(x) \) is monic of degree \(\phi(n) \).

To show \(\Phi_n(x) \in \mathbb{Z}[x] \), use induction. Base case trivial. Assume it's true for all \(1 \leq d < n \).

Then \(x^n - 1 = f(x) \Phi_n(x) \), where \(f(x) = \prod_{d \mid n, \text{d < n}} \Phi_d(x) \in \mathbb{Z}[x] \) is monic.
Clearly, \(f(x) \mid x^{p^n} - 1 \) in \(\mathbb{Q}(\omega)[x] \) (\(\omega \) a primitive \(n^{th} \) root of unity) and \(f(x), x^{p^n} - 1 \in \mathbb{Q}[x] \implies f(x) \mid x^{p^n} - 1 \) in \(\mathbb{Q}[x] \)
(by Euclidean Algorithm).

By Gauss' Lemma (Thm 3.13), \(f(x) \mid x^{p^n} - 1 \in \mathbb{Z}[x] \implies \Phi_n(x) \in \mathbb{Z}[x]. \)

Show \(\Phi_n(x) \) irreducible: Suppose that \(\Phi_n(x) = f(x)g(x) \),
where \(f(x), g(x) \in \mathbb{Z}[x] \) are both monic. (Goal: show one of them is \(1 \)).

Let \(w \) be a primitive \(n^{th} \) root of unity, which is a root of \(f(x) \).
If \(p \nmid n \) is prime, then \(w^p \) is primitive, so \(w^p \) is a root of \(f(x) \) or \(g(x) \).

Suppose \(g(w^p) = 0. \) Then \(w \) is a root of \(g(x^p) \implies f(x) \mid g(x^p). \)
(since \(f(x) \) is the minimal poly for \(w \) over \(\mathbb{Q} \)).

Say \(g(x^p) = f(y)h(x), \) \(h(x) \in \mathbb{Z}[x]. \)
Reduce mod \(p: \) \(g(x^p) = (g(x))^p = \overline{f(x)} \overline{h(x)} \in \mathbb{F}_p[x]. \)

Since \(\mathbb{F}_p[x] \) is a UFD, \(\overline{f(x)} \) \& \(\overline{h(x)} \) have a common factor in \(\mathbb{F}_p[x]. \)
Note: \(\Phi_n(x) = f(x)g(x) \implies \overline{\Phi_n(x)} = \overline{f(x)} \overline{g(x)} \)
\(\implies \overline{\Phi_n(x)} \in \mathbb{F}_p[x] \) has a multiple root.
\(\Rightarrow x^{p^n} - 1 \) has a multiple root, since \(\overline{\Phi_n(x)} \mid x^{p^n} - 1. \)

Therefore, \(f(w^p) = 0. \)
Similarly, if \((n, a) = 1\), then \(w^n\) is a root of \(f(x)\).

\[\Rightarrow\] Every primitive \(n^{th}\) root of unity is a root of \(f(x)\).

\[\Rightarrow\] \(f(x) = \Phi_n(x)\) \(\triangleq \Phi_n(x) \triangleq \quad |\)

Thus, \(\Phi_n(x)\) is irreducible. \(\square\)

Prop 4.3: Suppose \(\text{char } F = p \not| n\), and \(\omega \in F\) is a primitive \(n^{th}\) root of unity, and \(0 \neq b \in F\). Then a splitting field \(K\) for \(f(x) = x^n - b\) over \(F\) is a simple radical extension of \(F\) and the Galois group \(G\) of \(f(x)\) is abelian.

pf: Let \(\alpha \in K\) be a root of \(f(x)\). The distinct roots are then \(\alpha, \alpha w, \alpha w^2, \ldots, \alpha w^{n-1}\), so \(K = F(\alpha)\), and \(\alpha^n = b + F\), so \(K/F\) is a simple radical extension. \(\checkmark\)

The proof that \(G\) is abelian is analogous to that in Prop 4.1 (but moreover, \(G\) is cyclic). \(\square\)

Def: \(K/F\) is an extension by radicals if there is a sequence \(F = L_0 \subseteq L_1 \subseteq L_2 \subseteq \ldots \subseteq L_n = K\) such that \(L_i/L_{i-1}\) is a simple radical extension.

Def: A polynomial \(f(x) \in F[x]\) is solvable by radicals over \(F\) if there is an extension \(K/F\) by radicals such that \(f(x)\) splits in \(K[x]\).

This just means that we have a "formula" for the elements of \(K\), e.g., quadratic formula, cubic formula.
Fact: Over \mathbb{Q}, all degree-2, 3, and 4 polynomials are solvable by radicals, but not all degree-5 polynomials are. We will formalize and prove this using Galois theory.

Def: If $F \subseteq E \subseteq K$ and $F \subseteq L \subseteq K$, define the join of E in L to be $E \vee L = F(E \triangleleft L)$; i.e., "smallest subfield of K containing E and L".

Def: If G is a group, and $J, H \subseteq G$, define the join of $J \vee H$ to be $J \vee H = \langle J \cup H \rangle$; i.e., "smallest subgroup of G containing J and H".

Exercise: Suppose $F \subseteq E, L \subseteq K$, and $J, H \subseteq G = \text{Gal}(K/F)$. Then:

1. $J(E \triangledown L) = J(E) \cap J(L)$ and $F(J \vee H) = F(J) \cap F(H)$
Prop 4.4: Suppose $F \leq K_1, K_2 \leq L$ and K_i / F is an extension by radicals ($i = 1, 2$). Then $K_1 \vee K_2$ is an extension by radicals.

Pf: If $K_1 = F(a_1, \ldots, a_m)$ and $K_2 = F(b_1, \ldots, b_n)$, then
\[K_1 \vee K_2 = F(a_1, \ldots, a_m, b_1, \ldots, b_n). \]

Prop 4.5: If K / F is a separable extension by radicals, and L / F is a Galois closure, then L / F is a separable extension by radicals.

Pf: Recall: L is a splitting field for $F = \{ m_i(x) \}$ over F, where $\{a_1, \ldots, a_n\}$ is an F-basis for K.

Set $G = \text{Gal}(L / F)$.

Prop 3.3 $\Rightarrow \{ \phi(a_i) : \phi \in G, 1 \leq i \leq n \}$ spans L over F.

If $G = \{ \phi_1, \ldots, \phi_k \}$, set $K_i = \phi_i(K)$.

Then $L = K_1 \vee K_2 \vee \cdots \vee K_k$. Apply Prop 4.4.

Thm 4.6 (Galois): Suppose char $F = 0$, and $f(x)$ is solvable by radicals.

Then the Galois group of $f(x)$ is solvable.

Remark: The converse holds as well. (See Thm 4.10.)

Pf: Let $F = L_0 \leq L_1 \leq \cdots \leq L_k = K$ be a sequence of simple radical extensions, with $L_i = L_{i-1}(a_i)$, $a_i \in L_{i-1}$, such that there is a splitting field L for $f(x)$ over F, $L \leq K$.

Prop 4.5 \Rightarrow wlog we may assume that K / F is Galois (otherwise just take K to be the Galois closure).
Let $G = \text{Gal}(L/F)$, the Galois group of $F(x)$.

By FTGT, $\text{Gal}(L/F) \cong \text{Gal}(K/F)/\text{Gal}(K/L)$.

By Thm 5.4 (Groups), $(G \text{ solvable } \iff N \text{ solvable }$ and $G/N \text{ solvable}$).

$\text{Gal}(K/F) \text{ solvable } \iff \text{Gal}(K/L) \text{ solvable }$,

and $\text{Gal}(L/F) \text{ solvable }$.

We want to show Gal(L/F) is solvable, thus it suffices to show that Gal(K/F) is solvable.

Set $n = n_1 n_2 \ldots n_k$ and let M be the splitting field for $x^n - 1$ over K.

Let w be a primitive n_ith root of unity in M (i.e., $M = K(w)$).

Note: $F(w)$ contains all n_ith roots of unity for $1 \leq i \leq k$.

Since K/F is Galois, K is the splitting field for some $g(x)$ over F.

Clearly, M is a splitting field for $(x^{n_i} - 1)g(x)$ over F.

Therefore, M/F is Galois.

By FTGT, $\text{Gal}(K/F) \cong \text{Gal}(M/F)/\text{Gal}(M/K)$.

and $\text{Gal}(M/K) \text{ solvable } \iff \text{Gal}(M/L) \text{ solvable }$ and $\text{Gal}(K/F) \text{ solvable }$.

Suffices to show that Gal(M/K) is solvable.

Let $M_0 = F$, $M_1 = F(w)$, $M_2 = M_1(q_1)$, \ldots, $M_{k+1} = M_k(q_k) = M$.

We now have the chain of subfields
\[F \leq F(w) \leq F(w, a_i) \leq F(w, a_i, a_{i+1}) \leq \cdots \leq F(w, a_i, \ldots, a_k) = M, \]
\[\text{i.e. } L_0 \leq L_1 \leq L_2 \leq \cdots \leq L_k = M, \]
\[\text{i.e. } M_0 \leq M_1 \leq M_2 \leq \cdots \leq M_k = M. \]

Key: Each \(M_{i+1} = M_i(a_i) \) contains a root \(a_i \) of \(X^{n_i} - b_i \) and the \(n_i \)th roots of unity.

\[\Rightarrow \text{ Each } M_{i+1} = M_i(a_i) \text{ contains all roots of } X^{n_i} - b_i \]
\[\Rightarrow M_{i+1}/M_i \text{ is Galois.} \]

Prop. 4.3 \(\Rightarrow \text{Gal}(M_{i+1}/M_i) \text{ is abelian.} \)

Define \(H_0 = \text{Gal}(M/F) \)
\[H_i = \text{Gal}(M/M_i) \leq \text{Gal}(M/F), \text{ etc.} \]

Note: \(M/M_i \) and \(M_{i+1}/M \) are Galois

Apply FTGT:
\[\text{Gal}(M/M_{i+1}) = H_{i+1} \leq \text{Gal}(M/M_i) = H_i \]
and \(H_i/H_{i+1} \leq \text{Gal}(M_{i+1}/M_i) \) which is abelian.

By definition, \(\text{Gal}(M/F) \) is solvable
\[\Rightarrow \text{Gal}(M_{i+1}/F) \text{ is solvable} \]
\[\Rightarrow \text{Gal}(M_{i+1}/F) \text{ is solvable.} \]
Example: Let \(F(x) = x^5 + 5x^3 - 20x^2 + 5 \in \mathbb{Q}[x] \), which is irreducible by Eisenstein \((p=5)\).

By calculus, \(F(x) \) has exactly 3 real roots \(a_1, a_2, a_3 \).

Let \(a_4, a_5 \) be the complex (conjugate) roots.

Let \(K \subseteq \mathbb{C} \) be a splitting field for \(F(x) \) over \(\mathbb{Q} \).

Then \(5 \mid [K: \mathbb{Q}] = |G| \Rightarrow G \) contains a "5-cycle" \(\sigma \) (Cauchy).

Also, by Thm 3.5(c), complex conjugation restricted to \(K \) is a \(\mathbb{Q} \)-automorphism, fixing \(a_1, a_2, a_3 \), and \(a_4 \leftrightarrow a_5 \).

This element \(\tau \) is a "2-cycle" of \(G \).

Basic group theory fact: Any 3-cycle and 2-cycle generate \(S_5 \).

Therefore, \(G \cong S_5 \), which is not solvable \((S_5 \cong A_5 \cong 1; A_5 \) is simple but not abelian\).

Thus, \(F(x) \) is not solvable by radicals.

Similarly, any degree-\(p \) polynomial \((\text{prime } p \neq 5)\) with exactly \(p-2 \) real roots is not solvable by radicals.

For the converse of Thm 4.6, we need some more tools.

Def: Suppose \(F \) contains a primitive \(n^{th} \) root of unity, and \(K=F(a) \) is a simple Galois extension, \([K:F]=n\), and \(G=\text{Gal}(K/F)=\langle \phi \rangle \) has order \(n \). If \(w \in F \) is an \(n^{th} \) root of unity, then define the Lagrange resolvent of \(w \) and \(a \) to be

\[
L(w, a) = a + W\phi(a) + W^2\phi^2(a) + \ldots + W^{n-1}\phi^{n-1}(a),
\]
Exercise: \(\Phi(L(w, a)) = L(w, \Phi(a)) = w^i L(w, a) \).

Cor: \(\Phi(L(w, a)^n) = \Phi(L(w, a))^n = (w^i L(w, a))^n = L(w, a)^n \)

* i.e., \(L(w, a)^n \) is fixed by every \(\phi \in \text{Gal}(k|F) \)

\[\Rightarrow L(w, a)^n \in F. \]

Prop 4.7: Suppose \(w \in F \) is a primitive \(n^{th} \) root of unity

\[K = F(a) \] a Galois extension with \([K:F] = n \), and cyclic Galois group \(G = \text{Gal}(K|F) = \langle \phi \rangle \).

Then for some \(i \), \(L(w^i, a) \in K \setminus F \).

Pf: Recall that \(\sum_{i=0}^{n-1} w^i = 0 \). (See Remark, p. 2).

\[\sum_{i=0}^{n-1} L(w^i, a) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} w^i \phi^j(a) = \sum_{j=0}^{n-1} \phi^j(a) \sum_{i=0}^{n-1} (w^i)^j = 0 \]

Exercise: Rearrangement

\[= \phi^0(a) \sum_{i=0}^{n-1} (w^o)^j = an. \]

Since \(F \) contains a primitive \(n^{th} \) root of unity, \(\text{char } F \) \(\neq n \), so \(an \neq 0 \) \(\Rightarrow na \in K \setminus F \).

Therefore, at least one \(L(w^i, a) \in K \setminus F \). \(\blacksquare \)

Prop 4.8: Suppose \(p \in \mathbb{Z} \) is prime and \(F \) contains a \(p^{th} \) root of unity, and \(K/F \) is Galois with \([K:F] = p \).

Then \(K/F \) is a simple radical extension.

Pf: Since \([K:F] \) is prime, \(K = F(a) \) for any \(a \in K \setminus F \), and \(G = \text{Gal}(K|F) \) is cyclic \((|G| = [K:F] = p) \).

By Prop 4.7, \(\exists \) Lagrange resolvent \(b \in K \setminus F \).

By Exercise, \(b^p = c \in F \), i.e., \(b \) is a root of \(x^p - c \in F[x] \).
Prop 4.9: Suppose \(f(x) \in F[x] \) has Galois group \(G \) over \(F \), and \(E \mid F \) is any extension field. Then the Galois group of \(f(x) \) over \(E \) is isomorphic to a subgroup of \(G \).

Pf: Let \(L \mid E \) be a splitting field for \(f(x) \), with roots \(a_1, \ldots, a_n \). Then \(K = F(a_1, \ldots, a_n) \) is a splitting field for \(f(x) \) over \(F \).

If \(\phi \in \text{Gal}(L \mid E) \), then \(\phi \) permutes \(a_1, \ldots, a_n \), so \(\phi(K) = K \)
and \(\phi = 1_K \iff \phi(a_i) = a_i \forall i \iff \phi = 1_L \in \text{Gal}(L \mid E) \).

Thus, \(\exists \text{ Gal}(L \mid E) \xrightarrow{\phi} \text{Gal}(K \mid F) \)

Thus 4.10 (Galois): Suppose \(\text{char } F = 0 \), \(f(x) \in F[x] \), and the Galois group of \(f(x) \) is solvable. Then \(f(x) \) is solvable by radicals over \(F \).

Pf: Let \(K \) be a splitting field for \(f(x) \) over \(F \), set \(G = \text{Gal}(K \mid F) \) and say \([K : F] = n \).

Let \(L \mid K \) be a splitting field for \(x^n - 1 \), with \(L \) a primitive \(n \)th root of unity.

Set \(E = F(w) \), and so clearly \(L \mid E \) is a splitting field for \(f(t) \).

Set \(H = \text{Gal}(L \mid E) \)

Prop 4.9 \(\Rightarrow H \xrightarrow{\phi} G = \text{Gal}(K \mid F) \).

\(G \) solvable (by assumption) \(\Rightarrow H \) solvable.
By Thm 5.3 (Groups), \(H \) has a subnormal series \(H = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_k = 1 \) with abelian factors, and we can assume that \(H_{i-1}/H_i \) is cyclic of prime order \(p_i \) (by refinement).

Since \(E \subseteq L_i \), set \(L_i = F H_i \), so

\[E = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_k = L, \quad [L_i : L_{i-1}] = p_i. \]

Since \(\text{Gal}(L/L_i) = H_i \supset H_{i-1} = \text{Gal}(L/L_{i-1}) \),

\(L_i/L_{i-1} \) is Galois, and \(L_{i-1} \) contains a primitive \(p_i \)-th root of unity (which is a power of \(w \)).

By Prop 4.8, \(L_i/L_{i-1} \) is a simple radical extension, \(i=1, \ldots, k \).

Thus, \(L/E \) (i.e., \(L_k/L_0 \)) is an extension by radicals.

Since \(F = E(w) \), \(L/F \) is also an extension by radicals.

\(\square \)

Cor (of Thms 4.6, 4.10): Suppose \(\text{char } F = 0 \) and \(f(x) \in F[x] \).

Then \(f(x) \) is solvable by radicals iff the Galois group of \(F(x) \) is solvable.