5. Transcendental field extensions

Throughout, K is an extension field of F.

Def: A set $S \subseteq K$ is algebraically dependent over F if there are distinct elements $a_1, \ldots, a_k \in S$ and a nonzero polynomial $f(x_1, \ldots, x_k) \in F[x_1, \ldots, x_k]$ with $f(a_1, \ldots, a_k) = 0$.

Otherwise, S is algebraically independent.

Remark: This is a "generalization" of the notion of linear dependence; replace "nonzero polynomial" with "nonzero linear polynomial" to get the definition of linear dependence.

A lot of the ideas and results from linear algebra have similar versions in this setting.

Example 1: If $S = \{a_3\}$, then S is algebraically dependent over F iff a is algebraic over F.

Example 2: The set $\{\pi, \pi^2 - 3\pi + 5\}$ is algebraically dependent over \mathbb{Q}; consider the polynomial $f(x, y) = x^2 - y + 3x + 5$.

An algebraically independent set $S \subseteq K$ is called a transcendence set over F.

Exercise: Show that $S \subseteq K$ is algebraically dependent over F iff there is some $a \in S$ that is algebraic over $F(S \setminus \{a_3\})$.

Think: Formulate an analogous statement for linear dependent sets over V.

Def: If K/F is not algebraic, then K is a transcendental extension. If $K=F(S)$ for some transcendence set S over K, then K is a purely transcendental extension.

Example 3: $K=F(x)$ is purely transcendental.

Example 4: R/Q is transcendental, but not purely transcendental.

Def: A transcendence set $B \subseteq K$ over F is called a transcendence basis if it is maximal w.r.t. set inclusion.

Compare: Vector space basis = "maximal linearly independent set"
Transcendence basis = "maximal algebraically independent set."

By Zorn's Lemma, every transcendence set $S \subseteq K$ is contained in a transcendence basis B.

In particular, K has a transcendence basis over F.

Remark: K/F is algebraic iff $B=\emptyset$.

Prop 5.1: Suppose $S \subseteq K$ is a transcendence set and $a \in K \setminus S$.
Then $S \cup \{a\}$ is algebraically dependent over F iff a is algebraic over $F(S)$.

Remark: Compare again to linear algebra: If $S \subseteq V$ is a linear independent set and $a \in K \setminus S$, then $S \cup \{a\}$ is linearly dependent iff a is in the span of S.
PF: \(\Rightarrow \) Let \(S = \{ b_1, \ldots, b_k \} \) (possibly empty), and let
\(f(x_0, x_1, \ldots, x_k) \in F[x_0, x_1, \ldots, x_k] \) be a nonzero polynomial with \(f(a, b_1, \ldots, b_k) = 0 \).
Note that \(x_0 \) occurs in \(f(X) \), since \(S \) is a transcendental set.
Define \(g(x_0) = f(x_0, b_1, \ldots, b_k) \in F(S)[x_0] \).
Then \(g(x_0) \neq 0 \) but \(g(a) = 0 \Rightarrow a \) is algebraic over \(F(S) \).

PF: \(\Leftarrow \) Suppose \(g(a) = 0 \) for some \(0 \neq g(x) \in F(S) \).
We may assume WLOG that \(g(x) \in F[b_1, \ldots, b_k][x] \) for some \(\{ b_1, \ldots, b_k \} \subseteq S \).
Then \(g(a) = 0 \) is a nontrivial algebraic dependence relation
over \(F \) for \(\{ a, b_1, \ldots, b_k \} \), and hence for \(S \cup \{ a \} \).

Cor: If \(S \) is a transcendence set for \(K/F \), then \(S \) is a transcendence basis iff \(K/F(S) \) is algebraic.

Def: If \(S \subseteq K \), then the set
\(\Omega(S) = \Omega_{K,F}(S) = \{ a \in K : a \text{ is algebraic over } F(S) \} \)
is the algebraic closure of \(F(S) \) in \(K \).

This is the analog of the span of a set of vectors \(S \subseteq V \).

Easily verifiable facts:

(i) \(S \subseteq \Omega(S) \);
(ii) If \(S \subseteq T \subseteq K \), then \(\Omega(S) \subseteq \Omega(T) \);
(iii) If $a \in \sigma_2(S)$, then $a \in \sigma_2(S')$ for some finite set $S \subseteq S$;
(iv) $\sigma_2(\sigma_2(S)) = \sigma_2(S)$.

Prop 5.2: Suppose $S \subseteq K$, $a, b \in K$, and $b \notin \sigma_2(S \cup \{a, 3\})$.
Then $a \in \sigma_2(S \cup \{b, 3\})$.

Pf: Set $L = F(S)$, so b is transcendental over L but algebraic over $L(a)$.

By Prop 5.1, $\{a, b, 3\}$ is algebraically dependent over L.
Choose $f(x_1, x_2) \neq 0$ in $L[x_1, x_2]$ with $f(a, b) = 0$.

Note: x_1 must occur in $f(x_1, x_2)$, since b is transcendental over L.
Thus, $0 \neq g(x_1) = f(x_1, g) \in L(b)[x_1] = F(S \cup \{b, 3\})[x_1]$,
and $g(a) = 0$. Therefore, $a \in \sigma_2(S \cup \{b, 3\})$.

Thm 5.3: If A and B are transcendence bases for K/F,
then $|A| = |B|$.

Pf: WLOG, assume $0 < |A| \leq |B|$.

Case 1: $|A| < \infty$. Say $A = \{a_1, ..., a_n\}$.

Note: $B \notin \sigma_2(A \setminus \{a, 3\})$; in particular, $a_i \in \sigma_2(B)$ but $a_i \notin \sigma_2(A \setminus \{a, 3\})$.
Choose $b_i \in B \setminus \sigma_2(A \setminus \{a, 3\})$.

Prop 5.1 $\Rightarrow A_i = \{b_i, a_2, ..., a_n\}$ is a transcendence set.
Prop 5.2 $\Rightarrow a_i \in \sigma_2(A_i)$.

Therefore, A_1 is a transcendence basis.

Inductively, define $A_k = \{b_1, \ldots, b_k, A_{k+1}, \ldots, A_n\}$, which is also a transcendence basis.

Consider $k = n$: $A_n = \{b_1, \ldots, b_n\} \subseteq B$, and A_n and B are transcendence basis (maximal algebraically independent set), then $A_n = B$. Since $|A_n| = |A|$, $|A| = |B|$. √

Case 2: $|A| = \infty$.

For each $a \in A$, \exists finite set $B_a \subseteq B$ with $a \in \sigma(B_a)$.

Claim: $B = \bigcup_{a \in A} B_a$.

If this set was $C \subseteq B$, then $B \subseteq K \subseteq \sigma(A) \subseteq \sigma(C)$, contradicting algebraic independence of B.

Thus, $|B| = |\bigcup_{a \in A} B_a| \leq \sum_{a \in A} |B_a| \leq \aleph_0 |A| = |A|$. √

Def: The cardinality of a transcendence basis for K/F is called the transcendence degree of K/F, denoted $\text{trdeg}(K/F)$.

Prop 5.4: If $F \subseteq L \subseteq K$, then $\text{trdeg}(K/F) = \text{trdeg}(K/L) + \text{trdeg}(L/F)$.

Remark: This is different than for vector spaces: $[K:F] = [K:L][L:F]$.

Motivating example: Over \mathbb{Q}, $\{\sqrt{3}, \sqrt{2}, \sqrt{3} \sqrt{2}\}$ are linearly independent, but $\{\pi, e, \pi e\}$ are algebraically dependent.
Proof: Let A be a transcendence basis for L/F, and let B be a transcendence basis for K/L.

Clearly, \(A \cap B = \emptyset \), so \(L/F(A) \) is algebraic, thus \(L(B)/F(A)(B) \) is algebraic (note: \(F(A)(B) = F(A \cup B) \)).

We also have \(K/L(B) \) algebraic (Cor. to Prop 5.1) and \(L(B)/F(A \cup B) \) algebraic (similar), so by Prop 1.5, \(K/F(A \cup B) \) is algebraic.

Thus, \(\text{tr.deg}(K/F) \leq |A \cup B| \).

We need to show equality, i.e., verify that \(A \cup B \) is algebraically independent over \(F \).

Suppose that \(0 \neq F(X, Y) \in F[X, Y] \) and \(F(a_1, \ldots, a_m, b_1, \ldots, b_n) = 0 \) with \(a_i \in A, b_j \in B \).

Consider \(F(a_1, \ldots, a_m, Y) \in F[a_1, \ldots, a_m][Y] \); the coefficients are "polynomials" \(g_i(a_1, \ldots, a_m) \in F[a_1, \ldots, a_m] \).

Since \(B \) is a transcendence set over \(L \supseteq F(A) \), all the coefficients \(g_i(a_1, \ldots, a_m) = 0 \).

But then \(g_i(x_1, \ldots, x_m) = 0 \in F[X] \), since \(A \) is a transcendence set over \(F \) \(\Rightarrow F(X, Y) = 0 \) in \(F[X, Y] \).

Thus, \(A \cup B \) is a transcendence basis for \(K/F \), and so

\(\text{tr.deg}(K/F) = |A \cup B| = |A| + |B| = \text{tr.deg}(L/F) + \text{tr.deg}(K/L) \).
If K/F is purely transcendental and $\text{trdeg}(K/F) = 1$, then we can take assume that $K = F(x)$ for some indeterminate x. $F(x)$ is the field of rational functions in x over F, and has transcendence basis $B = \{x\}$.

Def: If $0 \neq \alpha \in F(x)$, and say $\alpha = \frac{f(x)}{g(x)}$, $(f(x), g(x)) = 1$, then define the degree of α to be $\deg \alpha = \max \{\deg f(x), \deg g(x)\}$.

Prop 5.5: If $K = F(x)$ and $\alpha \in K \setminus F$, then α is transcendental over F, and $[K : F(\alpha)] = \deg \alpha$.

Pf: Say $\deg \alpha = n > 0$, and write $\alpha = \frac{f(x)}{g(x)}$ with $f(x) = a_0 + a_1 x + \ldots + a_n x^n$ and $g(x) = b_0 + b_1 x + \ldots + b_n x^n \in F[x]$, at least $a_n \neq 0$ or $b_n \neq 0$.

Let y be another indeterminate over K, and set $h(y) = h_{\alpha}(y) = \alpha g(y) - f(y) \in F[\alpha][y] \subseteq K[y]$.

The leading coefficient of $h(y)$ is $\alpha b_n - a_n$, so $\deg h(y) = n$ and $h(x) = 0$.

Therefore, x is algebraic of degree $\leq n$ over $F(\alpha)$, and so α is transcendental over F.

* It suffices to show that $h(y)$ is the minimal polynomial of x (i.e., that $h(y)$ is irreducible over $F(\alpha)$).
If \(h_x(y) \) were reducible in \(F(x)[y] \), it would be reducible in \(F[x][y] = F[x, y] \). (Contrapositive to Gauss' lemma; Thm 3.13 Rings).

Since \(\deg h_x(y) = 1 \) in \(x \), if \(h_x(y) \) factored, then

\[
h_x(y) = u(y) \cdot v(x, y), \quad \deg u(y) = 0 \text{ in } x \Rightarrow u(y) \in F[y],
\]
and \(v(x, y) \in F[x, y] \) has degree 1 in \(x \).

Let \(\phi : F[x, y] \to F[y] \), \(\phi(x) = 0 \), \(\phi(y) = y \).

Apply \(\phi \) to \(x \cdot g(y) - f(y) = u(y) \cdot v(x, y) \)

\[
\Rightarrow \frac{-f(y)}{u(y)} \cdot v(0, y) \Rightarrow u(y) \mid f(y) \text{ in } F[y].
\]

Also, \(u(y) \mid x \cdot g(y) = h_x(y) + f(y) \Rightarrow u(y) \mid g(y) \).

Since \((f(y), g(y)) = 1 \) in \(F[y] \), \(\deg u(y) = 0 \), and thus

\(h_x(y) \) is reducible over \(F(x) \).

Since \(K = F(x) = F(x)(x) \), \([K : F(x)] = \deg h_x(y) = n = \deg x \).

\[\square\]

Cor 1: The minimal polynomial \(m(y) \) for \(x \) over \(F(x) \) is an

\(F(x) \)-multiple of \(x \cdot g(y) - f(y) \).

Cor 2: If \(K = F(x) \) and \(x \in K \setminus F \), then \(K = F(x) \) iff \(\deg x = 1 \),

i.e., if \(x = (ax+b)/(cx+d) \), with \(a, b, c, d \in F \) and \(ad \neq bc \).

\[\text{PF:} \] Since \([K : F(x)] = \deg x \), we have \(K = F(x) \) iff \(\deg x = 1 \),

i.e., \(x = (ax+b)/(cx+d) \). If \(ad = bc \), then either \(x = \gamma c \) or \(b/d \in F \).

\[\square\]
Def: If V is an n-dimensional vector space, then the
projective linear group is the quotient $\text{PGL}(n,F) = \text{GL}(n,F)/\mathbb{Z}(\text{GL}(n,F))$,
i.e., non-invertible matrices, quotient by $\{ kI : k \in F \}$.

Thm 5.6: If $K = F(x)$, x transcendental over F, then
$\text{Gal}(K/F) \cong \text{PGL}(2,F)$.

pf: Any $\phi \in \text{Gal}(K/F)$ must take x to a primitive
element, i.e., $\phi(x) = \frac{(ax+b)}{(cx+d)}$ for some $a,b,c,d \in F$, $ad \neq bc,$
by Cor 2.

Conversely, defining $\phi(x) = \frac{(ax+b)}{(cx+d)}$ completely determines
$\phi \in \text{Gal}(K/F)$ since $K = F(x)$.

Define $f : \text{GL}(2,F) \rightarrow \text{G}$

$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \phi \quad \text{where} \quad \phi(x) = \frac{(ax+b)}{(cx+d)}.
$$

If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{GL}(2,F)$ and $f(A) = 1 \in \text{G}$, then
$$
\frac{(ax+b)}{(cx+d)} = x \implies ax+b = cx^2 + dx \implies b = c = 0, \ a = d,
$$

Thus, ker $f = \{ a I : a \in F \setminus \{0\} \} = \mathbb{Z}(\text{GL}(2,F))$.

By the FHT theorem, $\text{G} \cong \text{GL}(2,F)/\mathbb{Z}(\text{GL}(2,F)) = \text{PGL}(2,F) \quad \Box$

Notation: If $f(x,y) \in F[x,y]$, then we can think of $f(x,y)$ as
a polynomial $f_y(x) \in F[y][x]$ or $f_x(y) \in F[x][y]$.

Example: $f(x,y) = x y - y x^3 + x^3 y + x^4 y^2$

$$
\begin{align*}
 f_y(x) &= (y-y^3) x + y x^3 + y^2 x^5 \quad \deg f_y(x) = 4 \\
 f_x(y) &= (x+x^3) y + x^4 y^2 - x y^3 \quad \deg f_x(y) = 3.
\end{align*}
$$
Thm 5.7 (Lüroth's Theorem): Suppose \(K = F(x) \) with \(x \) transcendental over \(F \), and \(F \subset L \subset K \). Then \(L = F(\tau) \) for some \(\tau \in K \) that is transcendental over \(F \).

\(\text{Pf.} \) If \(\beta \in L \setminus F \), then \(x \) is algebraic over \(F(\beta) \subseteq L \). By Prop 5.5. In this case \(x \) is also algebraic over \(L \), let \(m_x(y) = a_0 + a_1 y + \ldots + y^n \) be the minimal polynomial of \(x \) over \(F \), and so \([K:L] = [L(x):L] = n\).

At least one \(a_i \) is not in \(F \), say \(a_i = a_i(x) = \tau \in L \setminus F \).

By Prop 5.5, \([K:F(\tau)] = k \geq n \) (since \(F(\tau) \subseteq L \subseteq K \)).

*It suffices to show that \(k = n\).

By "clearing denominators" (multiplying through by \(b_n = \text{lcm}(a_1, \ldots, a_n) \)) we may replace \(m_x(y) \in F(x, y) \) with a primitive element \(u_x(y) = b_0 + b_1 x + \ldots + b_n x^n \in F[x, y] \), \(b_y = b_y(x) \in F[x] \).

Since \(\tau = a_i = b_i/b_n = f(x)/g(x) \), \deg u_y(x) \geq k.

Set \(h_x(y) = \tau g(y) - f(y) \in L[y] \).

\(h_x(y) = 0 \Rightarrow m_x(y) \mid h_x(y) \) in \(L[y] \), say \(m_x(y) p_x(y) = \tau g(y) - f(y) = [f(x)/g(x)] g(y) - f(y) \), \(p_x(y) \in L[y] \).

Set \(r(x, y) = f(x) g(y) - f(y) g(x) \in F[x, y] \).

Note: \deg r_x(y) = \deg \Gamma_y(x) = k.
Also, \(m_x(y) p_x(y) q(x) = f(x) g(y) - f(y) g(x) = r_x(y) \). (1)

View the LHS of this as an element in \(F(x)[y] \).

The denominators of coefficients cancel, and since \(u_x(y) \) is primitive, we may rewrite (1) as

\[u(x, y) q(x, y) = r(x, y) \quad \text{for some} \quad q(x, y) \in F[x, y]. \]

Now,
\[k = \deg r_x(x) = \deg u_y(x) + \deg q_y(x) \geq k + \deg q_y(x). \]

So,
\[\deg q_x(x) = 0, \quad q(x, y) = q(y) \in F[y] \quad \text{(and} \quad \deg u_y(x) = k). \]

Note: \(q(y) \) is primitive (its nonzero coefficients are units), so by Gauss' Lemma (Thm 3.13 Rings), so is \(u_x(y) q(y) \).

Thus, \(r_x(y) = u_x(y) q(y) \) is primitive over \(F[x] \).

But \(r(x, y) = -r(y, x) \Rightarrow r_y(x) = u_y(x) q(y) \) is primitive over \(F[y] \).

Therefore \(q(y) \) is constant, i.e., \(q(y) = q \in F \setminus \{0\} \), so

\[n = \deg u_x(y) = \deg r_x(y) = k. \]

Remark: There is an analog of Lüroth's theorem for purely transcendental extensions of degree 2 (Castelnuovo i; Zariski), if \(F \) is algebraically closed and \(K/L \) separable. Almost nothing is known for degree-3 transcendental extensions.