3. Projective and injective modules

Motivation: Free modules have some nice properties, that actually hold for a more general class of modules. Consider the following two results.

Prop 3.1: Suppose R is a ring with 1, M is a unitary R-module, F is a free R-module, and $f: \text{Hom}_R(M, F) \rightarrow 0$ is surjective. Then M has a free submodule E such that $M = E \oplus \text{ker } f$.

\[0 \rightarrow E \rightarrow M \xrightarrow{f} F \rightarrow 0 \]

Proof: Let \mathcal{B} be a basis for F, choose $x_0 \in M$ s.t. $f(x_0) = 0$ for each $b \in \mathcal{B}$, and set $E = R \langle \{x_0 : b \in \mathcal{B}\} \rangle$.

If $\sum_{i=1}^{k} r_i x_i = 0$, then $0 = f(\sum_{i=1}^{k} r_i x_i) = \sum_{i=1}^{k} r_i b_i \Rightarrow r_i = 0 \forall i$, i.e., $\{x_0 : b \in \mathcal{B}\}$ is linearly independent.

Thus, $\{x_0 : b \in \mathcal{B}\}$ is a basis for E, so E is free and clearly E is R-isomorphic with F.

If $x \in M$, write $f(x) = \sum_{i=1}^{k} r_i b_i$, and note that $x - \sum_{i=1}^{k} r_i x_i \in \text{ker } f$.

Thus, $M = E + \text{ker } f$.

Since $E \cap \text{ker } f = 0$, $M = E \oplus \text{ker } f$ by Thm 2.3. \(\Box\)
Prop 3.2: Suppose R is a ring with 1, and $M, N \in F$ are unitary R-modules with F free.

If $f \in \text{Hom}_R(F, N)$ and $g \in \text{Hom}_R(M, N)$ is surjective, then $\exists h \in \text{Hom}_R(F, M)$ such that $f = gh$.

(The homomorphism $f : F \to N$ "lifts" to a homomorphism h.)

Pf: Let B be a basis of F.

For each $b_i \in B$, choose $m_i \in M$ such that $g(m_i) = f(b_i)$.

Define $h : B \to M$ by $h(b_i) = m_i$, and extend this to $h \in \text{Hom}_R(F, M)$. This clearly works.

Remark: Props 3.1 & 3.2 do not necessarily hold if F is not free. For example, take $M = \mathbb{Z}$, $N = F = \mathbb{Z}_2$, and $\eta : \mathbb{Z} \to \mathbb{Z}_2$ the natural quotient map, so $\text{ker } \eta = 2\mathbb{Z}$.

Then $\mathbb{Z} \not\cong \mathbb{Z} \otimes \mathbb{Z}_2$, nor does there exist $h \in \text{Hom}_\mathbb{Z}(\mathbb{Z}_2 \to \mathbb{Z})$ such that $\text{id}_{\mathbb{Z}_2} = \eta h$.

Goal: Understand what class of modules these results do hold for. These will be precisely the "projective" modules.

First, we need to introduce the notion of an exact sequence.
Def: A sequence of R-modules and R-homomorphisms

$$\cdots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \cdots \quad (\star)$$

is exact at M_i if $\text{im} \ f_i = \ker \ f_{i+1}$. The sequence is exact if it is exact at each M_i.

Prop. 3.3:

(i) $0 \to L \xrightarrow{f} M$ is exact iff f is injective.

(ii) $M \xrightarrow{g} N \to 0$ is exact iff g is surjective.

(iii) $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ is exact iff

(a) f is injective
(b) g is surjective
(c) g induces an isomorphism $\text{coker} \ f := M / f(L) \cong N$

PF: Exercise.

An exact sequence of type (iii) above is called a short exact sequence.

Any long exact sequence (\star) can be broken up into short exact sequences via restriction.

Example: If $\xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1}$ is exact, then

$$0 \to \text{im} \ f_i \to M_i \xrightarrow{\text{im} \ f_{i+1}} 0$$

is exact.
Prop 3.4: Consider a sequence \(\xymatrix{ L \ar[r]^f & M \ar[r]^g & N } \) of homomorphisms.

(i) \(f \) is injective iff \(f \circ h_1 = f \circ h_2 \Rightarrow h_1 = h_2 \) \(\forall h_i \in \text{Hom}(M, N) \).

(ii) \(g \) is surjective iff \(h_1 \circ g = h_2 \circ g \Rightarrow h_1 = h_2 \) \(\forall h_i \in \text{Hom}(L, M) \).

PF: HW #6, last semester.

Prop 3.5: Let \(\xymatrix{ 0 \ar[r] & L \ar[r]^f & M \ar[r]^g & N \ar[r] & 0 } \) be an exact sequence. Then

(i) \(\xymatrix{ 0 \ar[r] & \text{Hom}_R(D, L) \ar[r]^{f_*} & \text{Hom}_R(D, M) \ar[r]^{g_*} & \text{Hom}_R(D, N) } \) is exact.

(ii) \(\xymatrix{ 0 \ar[r] & \text{Hom}_R(N, D) \ar[r]^{g^*} & \text{Hom}_R(M, D) \ar[r]^{f^*} & \text{Hom}_R(L, D) } \) is exact.

PF:

(i) First, show exactness at \(\text{Hom}_R(D, L) \), i.e., injectivity of \(f^* \):

\[
\text{Recall } f^*: \Theta \rightarrow f \circ \Theta
\]

Suppose \(f^*(\Theta) = f^*(\Theta') \).

Then \(f \circ \Theta = f \circ \Theta' \Rightarrow \Theta = \Theta' \) since \(f \) is injective (Prop 3.4 (i)).

Next, show exactness at \(\text{Hom}_R(D, M) \), i.e., \(\text{im} f^* = \ker g^* \):

\[
\text{im} f^* \subseteq \ker g^* \quad (\text{equivalently, } g^* \circ f^* = 0);
\]

\[
f^*: \Theta \rightarrow f \circ \Theta, \quad g^*: \Theta \rightarrow g \circ \Theta
\]

\[
\Rightarrow g^* \circ f^*: \Theta \rightarrow g \circ f \circ \Theta = 0 \quad \text{since } g \circ f = 0 \quad (m f = \ker g).
\]

\(\checkmark \)
\[\text{im } f_* \supseteq \ker g_*: \]

Suppose \(\theta \in \ker g_* \). Then \(g \circ \theta = 0 \in \text{Hom}_\#(D, N) \).

We will construct \(\varphi \in \text{Hom}_\#(D, L) \) s.t. \(f_*(\varphi) = f \circ \varphi = \theta \), i.e., a preimage of \(\theta \).

Choose \(d \in D \), and let \(m = \Theta(d) \in M \).

Since \(F \) is injective, \(\exists ! \ l \in L \) s.t. \(F(l) = m \).

Define \(\varphi(d) = F^{-1}(m) = l \).

It is easy to check that \(\varphi \in \text{Hom}_\#(D, L) \), and that \(f_*(\varphi) = F \circ \varphi = \theta \) (see above diagrams), so \(\theta \in \text{im } f_* \Rightarrow \text{im } f_* \supseteq \ker g_* \).

This proves (i). The proof of (ii) is analogous (it's dual), and is an exercise (HW).

Def: A short exact sequence \(0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0 \)

splits if \(\exists h \in \text{Hom}(N, M) \) s.t. \(g \circ h = 1_N \), i.e.,

\[0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0, \]

This is equivalent to \(M \cong L \oplus N \), i.e., we have the following diagram.
Here L is the injection of the first summand, and π is the projection onto the second summand.

Thm 3.5: Let P be a unitary R-module. The following are equivalent:

(i) For any unitary R-modules L, M, N, if

$$0 \longrightarrow L \overset{f}{\longrightarrow} M \overset{g}{\longrightarrow} N \longrightarrow O$$

is exact, then

$$0 \longrightarrow \text{Hom}_R(P, L) \overset{f^*}{\longrightarrow} \text{Hom}_R(P, M) \overset{g^*}{\longrightarrow} \text{Hom}_R(P, N) \longrightarrow 0$$

is exact.

(ii) Prop 3.2 holds for P: if $M \overset{g}{\longrightarrow} N \longrightarrow O$ is exact and $\varphi \in \text{Hom}_R(P, N)$, then $\exists h \in \text{Hom}_R(P, M)$ s.t. $\varphi = gh$ (h is a "lift" of φ).

(iii) Every short exact sequence $0 \longrightarrow L \longrightarrow M \longrightarrow P \longrightarrow 0$ splits (i.e., $M \leq L \oplus P$). Thus, Prop 3.1 holds for P.

(iv) P is a direct summand of a free R-module (i.e., for some free module F and R-module M, $F \cong M \oplus P$).
Pf:

(i) \iff (ii) Let $\varphi \in \text{Hom}_R(P, N)$. The condition of (i) holding is equivalent to $g_1 : \text{Hom}_R(P, M) \rightarrow \text{Hom}_R(P, N)$ being surjective, i.e., there we have $g_1 : h \rightarrow \varphi$ for some $h \in \text{Hom}_R(P, M)$, such that $g_1 h = \varphi$. In other words, given the following diagram, $\exists h : P \rightarrow M$ that makes it commute. This is precisely the condition of (ii).

(ii) \Rightarrow (iii) Let $0 \rightarrow L \overset{f}{\rightarrow} M \overset{g}{\rightarrow} P \rightarrow 0$ be exact. By (ii), the identity map $\text{id} : P \rightarrow P$ lifts to a homomorphism $h : P \rightarrow M$ such that $g h = \text{id}$.

Thus, we have $0 \rightarrow L \rightarrow M \overset{g}{\rightarrow} P \rightarrow 0$, as desired.

(iii) \Rightarrow (iv) Every module P is the quotient of a free module F, so we have an exact sequence $0 \rightarrow \ker \pi \rightarrow F \overset{\pi}{\rightarrow} P \rightarrow 0$ for such an F. Since this sequence splits by (iii), $F = P \oplus \ker \pi$.

(iv) \Rightarrow (ii) Suppose that P is a direct summand of a free module F, i.e., $F = P \oplus K$. Let $g : \text{Hom}_R(M, N)$ be surjective, and $\varphi \in \text{Hom}_R(P, N)$, we must show that there is some $h \in \text{Hom}_R(P, M)$ such that $g h = \varphi$.

If F is based on R, then let $\pi: P \otimes K \to P$ be the natural projection map, and $H \in \text{Hom}_R(F, M)$ such that $g \circ H = \phi \circ \pi$ (which exists by Prop 3.2).

Note that $P \cong P \otimes 0 \cong P \otimes K$, given $\pi: (p, k) \mapsto p \in P$, define $h \in \text{Hom}_R(P, M)$ by $h: (p, o) \mapsto H((p, o))$.

Clearly, this is an R-homomorphism and makes the above diagram commute. \(\square \)

Def: An R-module P is called **projective** if it satisfies any of the equivalent conditions of Thm 3.5.

Motivation for terminology: P is projective iff any R-module M that projects onto P has (an isomorphic copy of) P as a direct summand. (Condition (iii) in Thm 3.5).

Cor: Every module is a quotient of a projective module.

Examples:

1. \mathbb{Z} is a projective \mathbb{Z}-module;
 - Define $h(1) = g(\phi(1))$, and
 - extend additively.
$\mathbb{Z}/n\mathbb{Z}$ is not a projective \mathbb{Z}-module:

$$
\begin{array}{c}
0 \to \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/n\mathbb{Z} \to 0 \\
\end{array}
$$

Similarly, a free \mathbb{Z}-module cannot have nonzero elements of finite order.

The "dual" to the notion of projective module are called injective modules. Consider $f \in \text{Hom}(M, N)$.

Compare how Hom-sets induce homomorphisms between them:

$$f^*_x : \text{Hom}_R(D, M) \to \text{Hom}_R(D, N)$$

$$\varphi \longmapsto \varphi^*_x = f \circ \varphi$$

$$\begin{array}{c}
\xymatrix{
M \ar[r]^f & N \\
D \ar[ur]^{\varphi} \ar[u]_x \ar[ur]^{\varphi^*_x = f \circ \varphi} & \\
}
\end{array}$$

Thm 3.6: Let Q be a unitary R-module. The following are equivalent:

1. For any unitary R-modules L, M, N, if

 $$0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$$

 is exact, then

 $$0 \to \text{Hom}_R(N, Q) \xrightarrow{g^*_x} \text{Hom}_R(M, Q) \xrightarrow{f^*_x} \text{Hom}_R(L, Q) \to 0$$

 is exact.
(iii) If $0 \rightarrow L \xrightarrow{f} M$ is exact and $\psi \in \text{Hom}_R(L,G)$, then
\[\exists h \in \text{Hom}_R(M,G) \text{ s.t. } \psi = hf. \]
(h is a "lift" of ψ).

\[\begin{array}{c}
0 \\
\downarrow \\
Q \\
\downarrow \\
\circ
\end{array} \xrightarrow{f} \begin{array}{c}
L \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \end{array} \begin{array}{c}
M \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \end{array} \begin{array}{c}
N \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \end{array} \rightarrow 0 \]

(iii) If Q is a submodule of the R-module M, then Q is a direct summand of M, i.e., every short exact sequence
\[0 \rightarrow Q \rightarrow M \rightarrow N \rightarrow 0 \]
splits.

Pf: Exercise.

Def: An R-module Q is called injective if it satisfies any of the equivalent conditions of Thm 3.6.

Example:

1. \mathbb{Z} is not an injective \mathbb{Z}-module, since the exact sequence
\[0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 0 \]
does not split.

2. Q and Q/\mathbb{Z} are injective (but not projective) \mathbb{Z}-modules.

3. Fact: No non-zero finitely generated \mathbb{Z}-module is injective.

Cor: Every \mathbb{Z}-module is the submodule of an injective \mathbb{Z}-module.

Thm 3.7: Every unitary R-module M is contained in an injective R-module. (Exercise; see Dummit and Foote Ex. 10.5 #15-16).