MthSc 208, Spring 2011 (Differential Equations) **Dr.** Macauley HW 10 Due Thursday March 3rd, 2011

- (1) Solve the following differential equations.
 - (a) y' = -3y
 - (b) 2y' = t + 6y
 - (c) $2y' = t^2 + 6y$
 - (d) y'' + 4y = 0
 - (e) y'' = -9y + 12.
- (2) For each system below, write it as Ax = b. Find all solutions, and sketch the graph of the lines in each system on the same axis. Are the resulting lines intersecting, parallel, or coincident?
 - (a) $x_1 + 3x_2 = 0$, $2x_1 x_2 = 0$ (b) $-x_1 + 2x_2 = 4$, $2x_1 - 4x_2 = -6$
 - (c) $2x_1 3x_2 = 4$, $x_1 + 2x_2 = -5$ (d) $3x_1 2x_2 = 0$, $-6x_1 + 4x_2 = 0$

 - (e) $2x_1 3x_2 = 6$, $-4x_1 + 6x_2 = -12$
- (3) For each part, find the determinant, eigenvalues and eigenvectors of the given matrix. If the matrix is invertible, find its inverse.

(a)
$$\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix}$$
 (b) $\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}$ (c) $\mathbf{A} = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$
(d) $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}$ (e) $\mathbf{A} = \begin{pmatrix} -1 & -4 \\ 1 & -1 \end{pmatrix}$ (f) $\mathbf{A} = \begin{pmatrix} 5/4 & 3/4 \\ -3/4 & -1/4 \end{pmatrix}$

(4) For each problem below, find the eigenvalues of the given matrix, and then describe how the nature of the eigenvalue (e.g., positive/negative, complex, repeated, etc.) depends on the parameter α .

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & \alpha \end{pmatrix}$$
 (b) $\mathbf{A} = \begin{pmatrix} 1 & -\alpha \\ 2\alpha & 3 \end{pmatrix}$

- (5) In this problem we will show that $\lambda = 0$ is an eigenvalue of a matrix **A** if and only if $\det(\mathbf{A}) = 0.$
 - (a) Show that if $\lambda = 0$ is an eigenvalue of **A**, then det(**A**) = 0.
 - (b) Show that if $det(\mathbf{A}) = 0$, then $\lambda = 0$ is an eigenvalue of \mathbf{A} .