Week 15 summary:

• Solving Laplace equation in 2D: \(U_{xx} + U_{yy} = 0 \)

Separate variables, do it piece-by-piece, use superposition

\[
\begin{array}{c}
= \hline
\end{array}
\]

• 2D heat equation: \(U_t = \nabla^2 U \)

Solution is \(u(x, y, t) = U_h(x, y, t) + U_\delta(x, y) \)

where \(U_h(x, y, t) \) solves the homogeneous eq'n (zero-boundary condition)

• Solving the 2D heat and wave equations (homogeneous)

 * Assume \(U(x, y, t) = f(x, y) g(t) \), i.e. separate variables.
 * Get the Helmholtz eq'n for \(f: \) \(\nabla^2 f + \lambda f, \ 9 = -(n^2 + m^2) \).
 * The general solution is \(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \).
 * Use the initial condition(s): plug in \(t = 0 \) and equate coefficients.